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The most important lesson in stats: 
Statistics is a field of study, not a tool

 2

Statistics is its own field. There is a ton to learn, and more is being discovered 
every day. Statisticians have different philosophies, theories, tastes, etc. They 
can’t tell you the “correct” theory any more than we can tell them the “correct” 
theory of linguistics.

What we want to do is take this large and vibrant field, and convert it into a 
tool for us to use when we need it. This is a category mismatch.

Imagine if somebody tried to do that with linguistics. We would shake our 
heads and walk away…

But statistics is in a weird position, because other sciences do need the tools 
that they develop to get work done. And statistics wants to solve those 
problems for science. So we have to try to convert the field into a set of tools.

Statistics ≠



What you will run for (most) papers
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Obviously, I am not qualified to teach you the actual field of statistics. And 
there is no way to give you a complete understanding of the “tool version” of 
statistics that we use in experimental syntax in the time we have here. 

So here is my idea. I am going to start by showing you the R commands that 
you are going to run for (most) of your experimental syntax papers. Then we 
will work backwards to figure out exactly what information these commands 
are giving you.

library(lmerTest)

Load the lmerTest package

model.lmer=lmer(responseVariable~factor1*factor2 + (1+factor1*factor2|
subject) + (1|item), data=yourDataset)

Create a linear mixed effects model with your fixed factors (e.g., 
factor1 and factor2) and random factors for subjects and items.

Run the anova() function to derive F statistics and p-values using the 
Satterthwaite approximation for degrees of freedom.

anova(model.lmer)

1.

2.

3.



The results for our data
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If we run the following code in the script called linear.mixed.effects.models.r: 

wh.lmer = lmer(zscores~embeddedStructure*dependencyLength + (1|subject) 
+ (1|item), data=wh)

anova(wh.lmer)

And then use the summary() and anova() functions, we get the following 
results:

summary(wh.lmer)

In this section we want to try to understand what the model above is modeling, 
and what the information in the summaries is telling us.



Theories, models, and hypothesis tests
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Substantive 
Theories

Mathematical 
Models

Hypothesis 
Tests

As scientists, theories are what we really care about. 
Substantive theories are written in the units of that science; 
e.g., syntactic theories are written in terms of features, 
operations, tree-structures, etc.

We want to find evidence for our theories. But what counts 
as evidence? One possible answer (among many) is: (i) a 
successful theory will predict observable data, therefore (ii) 
we can use a measure of how well a theory predicts the 
data as evidence for/against a theory. If we adopt this view, 
we need to link our theories to observable data in a way 
that lets us quantify that relationship. In short, we need a 
mathematical model that relates our theory to the data. 
This opens up lots of doors for us. We can create metrics to 
evaluate how good a model is, and compare models for 
goodness. And we can use probability theory to answer 
questions like “how likely is this data given this theory?”, 
“how likely is this theory given this data?”.

Once we have models, and metrics for comparing them, we 
may want to formalize a criterion for choosing one model/
theory over another. In other words, a test.



Constructing a model for our theory

 6

The theory of 
wh-islands:

Our theory is that there is constraint on the extraction of 
wh-words out of embedded questions. 

Acceptability +Grammar +
memory parsing

world thought Noise

Task Effects

Our model: We already have a model in mind for our theory. We think 
that this constraint will affect acceptability. So we need a 
model of acceptability that has a spot for this constraint.

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

So all we need to do is translate this model of acceptability into a specific 
equation for our experiment. Here is what it is going to look like: 

Now let’s spend the next several slides building this equation so you can see 
where it came from.



This is a model to predict every judgment
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We have 224 judgments in our dataset. We want a model that can explain 
every one of them. We capture this with the i subscript:

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

This is shorthand for 1 to 224

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure1:dependency1 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure1:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency1 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…

acceptability224 = β0 + β1structure1 + β2dependency1 + β2structure1:dependency1 + ε224

Also notice that when we write out the individual equations for each judgment 
in our dataset, certain other numbers become concrete. The subscript on the 
structure and dependencies factors becomes a specific number (0 or 1), and 
the i subscript on the ε term takes the same value as the judgment.



Coding the variables
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The factors in our experiment are categorical (non-island/island, short/long).

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure1:dependency1 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure1:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency1 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…

Categorical variables can either be turned into 0 and 1 (treatment coding), or 
into -1 and 1 (effects coding). There is a difference between them that we will 
talk about in a few minutes. But for now, let’s choose 0 and 1, like so:

structure 
non-island = 0 
island = 1

dependency 
short = 0 
long = 1

Now look at the first four equations 
below. Can you see which condition 
each one represents?

The first is non-island because its structure is 0, and it is short because its 
dependency is also 0. The fourth is island because its structure is 1, and it is 
long because its dependency is 1.



What are the Betas?
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The betas in this equation are coefficients. They are the numbers that turn the 
0s and 1s into an actual effect on acceptability.

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure1:dependency1 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure1:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency1 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…

The idea is that you multiply the beta by the 0 or 1 in the factor to get an 
effect. So when the factor is 0, there is no effect. And when the factor is 1, you 
get an effect that is the same size as the beta.

It is important to note that each beta is constant. β1 is always β1. It doesn’t 
have another subscript that varies for each judgment (unlike the ε term). This 
is why each beta can be seen as an effect.

β1 is the effect of having island structure.

β2 is the effect of having a long dependency.



structure1:dependency1 is the violation
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The structure1:dependency1 term looks strange because it is the interaction 
term (the colon is a way of notating this). It is the special extra effect that 
occurs when the levels of the two factors are both 1. Basically, you multiply the 
two numbers together (0*0, 0*1, 1*0, or 1*1), and then multiply the result by 
β3 .

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure0:dependency0 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure0:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency0 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…
The interaction term does nothing for the first three conditions, because it is 
equivalent to a 0 then. In the fourth condition (1,1) it is a 1. In this condition, 
that 1 is multiplied by β3 to add to the effect. This means that β3 is the size of 
the violation effect (it is the DD score from earlier!). Note that this is only true 
with treatment (0,1) coding. The coefficients have different interpretations with 
different codings.

In our substantive theory, this mathematical term captures the effect of a 
violation. The island/long condition (1,1) is the only condition that meets the 
structural description of the island constraint.



ε is the error term
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If you just look at the betas and factors, you will quickly see that we can only 
generate 4 acceptability judgments: one for each condition in our experiment 
(00, 01, 10, 11). But we have 224 values that we need to model. And that is 
where the ε term comes in.

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure1:dependency1 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure1:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency1 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…

This may seem like a hack, but it is principled. The other parts of our model 
capture the things that we manipulated in our experiment. The error term 
captures all of the things that we couldn’t control: individual differences in the 
participants, differences in the items, effects of the task, etc. (And we will see 
later that we can model some of these things, at least a little bit).

The ε term is an error term. It is the difference between the value that the 
model predicts and the actual value of the judgment. This is why it varies in its 
subscript: we need a different ε term for each judgment.



We minimize the ε’s to estimate β’s
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Once you’ve specified your model (as we have here), the next step is to find 
the coefficients that make for a good model. 

Here is a toy example with 3 values and a simple model with only one beta:

One way to define “good” is to say that a good model will minimize the amount 
of stuff that is unexplained. Well, all of our unexplained stuff is captured by the 
ε terms, so this means that we want to minimize ε.

Let’s imagine we have three judgments 
to model (2,3,4). If we choose the value 
4 for the coefficient of β0, we get ε 
terms (-2, -1, 0), which we can square 
and sum to derive a sum of squares.

acci = εiβ0 +

2 = -24 +

3 = -14 +

4 = 04 +

SS=5

εi+

2 = -13 +

3 = 03 +

4 = 13 +

SS=2

Now, let’s imagine we have the same data, 
but we choose 3 for the coefficient of β0. 
Now we get smaller error terms, and 
consequently a smaller SS. This is a better 
model, because less is unexplained.

acci = β0
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Putting it all together

 13

You specify the model for R. That was the command we entered into the 
console. R will then find the best value of the coefficients for the data that you 
gave it. 

β0

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

β0+β2β0+β1

β0+β1+β2+β3

And you might recall that this is exactly the 2x2 logic that we discussed earlier.

εi: the distance 
between raw 
points and its 
condition mean



The R command
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Now that we understand our linear model, we can compare it to the R 
command that we ran at the beginning of this section. I will color parts so that 
you can see the correspondence:

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

lmer(zscores ~ embeddedStructure + dependencyLength + embeddedStructure:dependencyLength + 
(1|subject) + (1|item), data=wh)

You don’t need to specify the intercept (β0) in the command. R includes one by 
default (you can, however, tell it not to estimate an intercept if you want).

You don’t need to specify the error term (εi) in the command. Again, R includes 
one by default.

You will also notice that lmer() formula contains extra bits: (1|subject) and (1|
item). That is because the top model only has fixed effects. The (1|subject) 
and (1|item) terms are random effects. We will turn to those next.



The R command - a shortcut
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You may have noticed that the command I just showed you is not exactly the 
command in the script (or on the slide at the beginning of this section). That is 
because there is a shortcut in R for specifying two factors and an interaction:

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

When you want all three effects, you can use the * operator instead of a +. R 
will automatically expand this to all three components:

embeddedStructure 
dependencyLength 
embeddedStructure:dependencyLength

It is a nice shortcut that really saves you time if you have more than two 
factors, because they grow in squares (remember, a 2x2x2 will have 8 
components, and 2x2x2x2 will have 16).



Subject differences
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Let’s talk about the first term (1|subject). As the name suggests, this term 
captures differences between the subjects in our dataset. 

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

The plot at the right shows the 
mean rating of the 4 
experimental conditions for 
each subject. As you can see, 
there is quite a bit of variability.
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The (1|subject) term in the 
model tells R to estimate an 
intercept for each subject. This 
intercept is added to each 
subjects judgments to try to 
account for these differences.

Basically, instead of having these subject differences contaminate the effects of 
interest, or having these differences sit in an error term, this asks the model to 
estimate them. The code for this plot is in subject.item.differences.r.



Item differences
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The second term, (1|item), is similar. As the name suggests, this term 
captures differences between the items in our dataset. 

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

Once again, we can plot the 
means of each item to see their 
differences. Now, we expect 
differences between items 
based on their condition. But as 
you can see by the colors 
(colors = condition), there are 
differences between items 
within a single condition. 

This code asks R to estimate an intercept for each item, and add it whenever 
that item is being modeled. This makes sure that it isn’t contributing to the 
other (important) effects, or to the error term. The code for this plot is in 
subject.item.differences.r.
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Fixed factors vs Random factors
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Now, you may have noticed that our experimental factors look different from 
these subject and item factors in the R command. This is because the former 
are fixed factors and the latter are random factors.

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

fixed factors random factors

There are two common ways to define the difference between fixed and 
random factors. The first is operational, the second is mathematical:

Fixed factors are factors whose levels must be replicated exactly in order 
for a replication to count as a replication.

1. 

Fixed factors are factors whose levels exhaust the full range of possible 
level values (as they are defined in the experiment).

2. 

Random factors are factors whose levels will most likely not be replicated 
exactly in a replication of the experiment.

Random factors are factors whose levels do not exhaust the full range of 
possible level values.



Random intercepts and slopes
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One last note about random factors. So far, we’ve only specified random 
intercepts — one value for each subject and one value for each item. But we 
can also specify random slopes. A random slope specifies a different value 
based on the values of the fixed factors (remember in our linear model, it is 
the fixed factors that specify the slopes of the lines). 

lmer(zscores ~ embeddedStructure * dependencyLength + 
(1+embeddedStructure*dependencyLength|subject) + (1|item), data=wh)

The code for this looks complicated at first glance, but it isn’t. We simply copy 
the fixed factor structure into the random subject term:

The 1 in the code tells R to estimate an intercept for each subject. The next bit 
tells R to estimate three more random coefficients per subject: one for 
embeddedStructure, one for dependencyLength, and one for the interaction 
embeddedStructure:dependencyLength.

There is a “best practices” claim in the field (Barr et al. 2013) that you should 
specify the “maximal” random effects structure licensed by your design. These 
means specifying random slopes if your design allows it.

The problem is that maximal random effects structure sometimes don’t 
converge (R can’t find a solution). In that case, you need to use a simpler 
model like an intercepts-only model.



This is a linear mixed effects model
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A model that only has fixed effects is usually just called a linear model, though 
it is perhaps more correctly a linear fixed effects model.

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

fixed factors random factors

A model that has both fixed factors and random factors is called a mixed 
model, so if it is linear, it is a linear mixed effects model.

In R, there is a package called lme4 that exists to model linear mixed effects 
models. You could load lme4 directly, and create the linear mixed effects model 
above. The function lmer() is a function from lme4.

We are using the package lmerTest to run our models. The lmerTest package 
calls lme4 directly (when you installed it, it also installed lme4). The reason we 
are using lmerTest is that lmerTest also includes some functions that let us 
calculate inferential statistics, like the F-statistic, and p-values. The lme4 
package doesn’t do that by itself.



The Random slopes model in our script
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Our script linear.mixed.effects.models.r contains the code for both an intercept-
only model and a random slopes model. You should try running them.

What you will find is that the intercept-only model runs fine, but the slopes 
model fails to converge. Like I said, this happens with random slopes models.

It turns out that the problem with the model is our coding of the factors. We 
used treatment coding, but for some reason (that I don’t understand), the 
coding is causing a problem for the model.

The model will converge with a different coding scheme called effect coding. 
This appears to be a pattern: many random slopes models will fail to converge 
with treatment coding, but succeed with effect coding.

So what should we do? Well, the coding doesn’t affect things like F-statistics, t-
statistics, and p-values. Those will be the same regardless of the coding 
scheme. So if that is all you care about, go ahead and change the coding.

What does change is the interpretation of the coefficients in the model. In the 
next few slides, I will show you this change in interpretation. But the bottom 
line is that if the interpretation is important to you, you either need to drop the 
random slopes, or translate the effect coding estimates into treatment coding 
estimates by hand.



Simple effects vs Main effects
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The first step to understanding the difference between treatment coding and 
effect coding is to understand the difference between simple effects and main 
effects:

ac
ce

pt
ab

ili
ty

short long

1

2
3

4

Simple effects are a difference between two conditions.

Typically, a simple effect is defined relative to one condition, the baseline 
condition. So if condition 1 were the baseline condition, we could define two 
simple effects:

The effect of 1 vs 2.

The effect of 1 vs 3.

The effect of 1 vs 4 is the sum of these 
two (in this example).



short 
mean

Simple effects vs Main effects

 23

The first step to understanding the difference between treatment coding and 
effect coding is to understand the difference between simple effects and main 
effects:

ac
ce

pt
ab

ili
ty 1

2

Main effects are the difference between the grand mean of all conditions and 
the average of one level across both levels of the other factor.

Again, in a 2x2 design we can define two main effects: embeddedStructure and 
dependencyLength. Each one goes in two directions (one positive, one 
negative)

The blue arrows are the main effect of 
dependencyLength (positive and 
negative change from the grand mean) 

The orange arrows are the main effect 
of embeddedStructure (positive and 
negative changed from the grand mean)

3

4

grand 
mean

short long

long 
mean

non-island 
mean

island 
mean

Each condition is a combination of the 
two main effects (in this example).
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Treatment coding reveals simple effects

 24

In treatment coding, each level is either 0 or 1. This is what we’ve been using 
so far. Treatment coding is great when one of your conditions can be 
considered a baseline in your theory.

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

Treatment coding coefficients show you simple effects: the difference 
between the baseline condition and another condition. It works well for some 
designs, and less so for others (e.g., when you have no clear baseline).

0,0
0,1

1,1

1,0

β0

β0+β2β0+β1

β0+β1+β2+β3
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Effect coding reveals main effects
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In effect coding, the factors are given the values 1 or -1. This doesn’t change 
the model that we specify, but it changes the interpretation of the coefficients. 
Effects coding is helpful when there is no clear “baseline” condition.

β0

acceptabilityi = β0 + β1structure(1,-1) + β2dependency(1,-1) + β3structure1:dependency1 + εi

Effect coding coefficients show you main effects. But be careful. Main effects 
are not straightforward to interpret when there is an interaction (because the 
interaction contaminates them).

β0+β1

β0-β1
β0-β2

β0+β2

β0+β1+β2+β3

β0-β1+β2-β3

β0+β1-β2-β3

β0-β1-β2+β3

1,1
1,-1

-1,-1

-1,1



Choosing a contrast coding
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Contrast coding is primarily about interpreting the coefficients in your model. If 
you don’t care about trying to interpret those, then the contrast coding scheme 
will rarely matter. Contrast coding has no effect on statistics like F and t, and 
will not impact the p-values that F-tests and t-tests give you.

If you care about interpreting the coefficients, then you have to use your 
scientific knowledge to figure out which one is best for you.

Effect coding is best when you don’t have a clear baseline, or when you care 
about main effects (average effects of a factor). If you do care about main 
effects, remember that the present of an interaction makes it impossible to 
interpret main effects (because the interaction contaminates them).

Treatment coding is best if you have a clear baseline condition, and care about 
simple effects (differences from the baseline).

Finally, there are two times where it is better, mathematically, to use effect 
coding:

1. Some random slopes models won’t converge with treatment coding, but will 
converge with effect coding (like our random slope model).

2. If you are mixing categorical and continuous factors, treatment coding can 
introduce hescadasticity (variable variance). Effect coding does not.

t



Table of contents

 27

Conditions

Items

Ordering items for presentation

Judgment Tasks

Recruiting participants

Pre-processing data (if necessary)

Introduction: You are already an experimentalist1.

2.

3.

4.

5.

6.

7.

Plotting8.

Building linear mixed effects models9.

Evaluating linear mixed effects models using Fisher10.

Bayesian statistics and Bayes Factors 12.

Validity and replicability of judgments13.

The source of judgment effects14.

Gradience in judgments15.

Section 1: 
Design

Section 2: 
Analysis

Section 3: 
Application

Neyman-Pearson and controlling error rates11.



Let’s look at the coefficients 
of the intercept model (wh.lmer)
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Here is the output of 
summary(wh.lmer) for 
treatment coding:

Here is the output of 
summary(wh.lmer) for 
effect coding:

The β’s for the model are listed under Estimate. Go ahead and check these 
numbers against the graph of our condition means.

Just for fun, we can also look at the β’s from effect coding. As you can see, 
they are very different. You can check them against the β’s for treatment 
coding (you can translate between the two using the formulae in the previous 
slides, though it takes some effort).

Also notice there are some statistical things to the right in these readouts, such 
as t values and p-values… and notice that they don’t change based on coding!



Anova(wh.lmer) yields F-statistics and p-values
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Here is the output of 
anova(wh.lmer) for 
both coding types:

Although the summary() function had statistics in it (t statistics and p-values), 
I want to focus on the anova() function. This is the same information that you 
would get from a fixed effects ANOVA, which I think is useful for relating mixed 
effects models to standard linear models.

There are two pieces of information here that I want to explain in more detail: 
the F statistic and the p-value. These are the two pieces of information that 
anova() adds to our interpretation. With that, we will have (i) the graphs, (ii) 
the model and its estimates, (iii) the F statistic, and (iv) the p-value. Together, 
those 4 pieces of information provide a relatively comprehensive picture of our 
results.

Someday, it will be worth it for you to explore the Sum of Squares and df 
values, but for now, we can set them aside as simply part of the calculation of 
F’s and p’s respectively.



The F statistic is about evaluating models
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There are two common dimensions along which models are evaluated: their 
adequacy and their simplicity.

Adequacy: We want a model that minimizes error1.

We can measure simplicity with the number of parameters that are 
estimated from the model. A model that estimates more parameters is 
more complicated, and one that estimates fewer parameters is simpler.

We’ve already encountered this. We used sum of squares to evaluate the 
amount of error in a model. We chose the coefficients (the model) that 
minimized this error.

Simplicity: We want a model that estimates the fewest parameters2.

The intuition behind this is that models are supposed to teach us 
something. The more the model uses the data, the less the model itself is 
contributing.

The models we’ve been constructing are estimating 4 parameters from the 
data: β0, β1, β2, and β3



Degrees of Freedom as a measure of simplicity
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We can use degrees of freedom as a measure of simplicity.

Notice that df makes a natural metric for simplicity for three reasons:

df = number of data points - number of parameters estimated

df = n - k

It is based on the number of parameters estimated, which is our metric.

It captures the idea that a model that estimates 1 parameter to explain 100 
data points (df=99)  is better than a model that estimates 1 parameter to 
explain 10 (df=9).

2. 

1. 

The values of df work in an intuitive direction: higher df is better (simpler) 
and lower df is worse.

3. 



In practice, there is a tension between  
adequacy and simplicity
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Adequacy seeks to minimize error. Simplicity seeks to minimize the number of 
parameters that are estimated from the data.

Imagine that you have 224 data points, just like our data set. A model with 
224 parameters would predict the data with no error whatsoever because each 
parameter would simply be one of the data points. (This the old saying “the 
best model of the data is the data.”). This would have perfect adequacy.

But this model would also be the most complicated model that one can have 
for 224 data points. It would teach us nothing about the data. 

This tension is not a necessary truth. There could be a perfect model that 
predicts all of the data without having to look at the data first. But in practice, 
there is a tension between adequacy and simplicity.

To put this in terms of our metrics, this means there will be a tension between 
sum of squares and degrees of freedom.

So what we want is a way to balance this tension. We want a way to know if 
the df we are giving up for lower error is a good choice or not.



A transactional metaphor
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One way to think about this is with a metaphor. As a modeler, you want to 
eliminate error. You can do this by spending df. If you spend all of your df, you 
would have zero error. But you’d also have no df left. We have to assume that 
df is inherently valuable (you lose out on learning something) since you can 
spend it for stuff (lower error). So you only want to spend your df when it is a 
good value to do so.

Thinking about it this way, the question when comparing models is whether you 
should spend a df to decrease your error. The simple model keeps more df. The 
complex model spends it. The simple model has more error. The complex 
model has less error because it spent some df. Which one should you use?

Yi = εiβ0 +

2 = -24 +

3 = -14 +

4 = 04 +

SS=5

Yi = εiβ0 +

2 = -13 +

3 = 03 +

4 = 13 +

SS=2df=3 df=2

Simple: spends no df Complex: spent a df



A transactional metaphor
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When you are faced with the prospect of spending df, there are two questions 
you ask yourself:

1. How much (lower) error can I buy with my df?

2. How much error does df typically buy me?

In other words, you want to compare the value of your df (in this particular 
instance), with the value of your df in general. If the value here is more than 
the value in general, you should spend it. If it is less, you probably shouldn’t 
spend it, because that isn’t a good deal.

We can capture this with a ratio:

How much error can I buy with my df?

How much error does df typically buy me?

If the ratio is high, it is a good deal, so you spend your df. If the ratio is low, it 
is a bad deal, so you don’t spend your df.



The F ratio
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To cash out this intuition, all we need to do is calculate how much you can buy 
with your df, and then calculate the value you can expect for a df, and see if 
you are getting a good deal by spending the df.

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

The second equation takes the error of the complex model and divides it by the 
number of df in that model, giving you the value in error-elimination for each 
df. The complex model has the lowest error of the two models, so it is a good 
reference point for the average amount of error-elimination per df.

the amount of error you can 
buy with a df =

the amount of error df typically 
buys

= SScomplex/dfcomplex

Let’s take a moment to really look at these equations.

The first takes the difference in error between the models and divides it by the 
difference in df. So that is telling you how much error you can eliminate with 
the df that you spent moving from one model to the next. Ideally, you would 
only be moving by 1 df to keep things simple. 



The F ratio
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So now what we can do is take these two numbers, and create a ratio:

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex

F = 

If F stands for the ratio between the amount of error we can buy for a df and a 
typical value for a df, then we can interpret it as follows:

If F equals 1 or less, then we aren’t getting a good deal for our df. We are 
buying relatively little error by spending it. So we shouldn’t spend it. We should 
use the simpler model, which doesn’t spend the df.

If F equals more than 1, we are getting a good deal for our df. We are buying 
relatively large amounts of error-reduction by spending it. So we should spend 
it. We should use the more complex model (which spends the df) in order to 
eliminate the error (at a good value).

The F ratio is named after Ronald Fisher (1890-1962), who developed it, along 
with a lot of methods in 20th century inferential statistics.



Our toy example
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Here are our two models:

Yi = εiβ0 +

2 = -24 +

3 = -14 +

4 = 04 +

SS=5

Yi = εiβ0 +

2 = -13 +

3 = 03 +

4 = 13 +

SS=2df=3 df=2

simple complex

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex

F = = 
(5-2)/(3-2)

2/2
= 3 

So in this case the F ratio is 3, which says that we can buy three times more 
error-elimination for this df than we would typically expect to get. So that is a 
good deal, and we should use that df. So the complex model is better by this 
metric (the F ratio).



Our real example
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Here is the output of 
anova(wh.lmer) for 
both coding types:

Now let’s look again at the output of the anova() function (which calculates F’s) 
for our example data. 

The first F in the list is for the factor embeddedStructure. This F is comparing 
two models:

acceptabilityi = β0 + β1structure(0,1)

acceptabilityi = β0simple:

complex:

The resulting F ratio is 146:1, so yes, the structure factor is pretty good value 
for the df spent.



Our real example
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Here is the output of 
anova(wh.lmer) for 
both coding types:

The second F in the results is for dependencyLength. Again, this is comparing 
two models:

acceptabilityi = β0 + β2dependency(0,1)

acceptabilityi = β0simple:

complex:

The resulting F ratio is 186:1, so yes, the dependency factor is pretty good 
value for the df spent.



Our real example
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Here is the output of 
anova(wh.lmer) for 
both coding types:

The final F is for the interaction of the two factors. This is still comparing two 
models, but in this case, the simpler model is the model with the two main 
effects present with no interaction (+), and the complex model adds the 
interaction (*):

acceptabilityi = β0 + β1structure(0,1) * β2dependency(0,1)

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1)simple:

complex:

The resulting F ratio is 64:1, which again, is a good value, and suggests that it 
was a good idea to add the interaction term.



Model comparison is not hypothesis testing
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Let’s be clear: model construction and comparison is its own exercise. Nothing 
we have done so far has been a formalization of a hypothesis test. We’ve just 
been talking about how to construct models, and how to compare two models 
that we’ve constructed using information that seems useful.

I want to stress the fact that you can be interested in model construction and 
model comparison for its own purposes. Models are a tool that allows you to 
better understand your research question. You can see exactly how different 
factors contribute to the dependent variable.

This distinction between model construction/comparison and hypothesis testing 
is why lme4 doesn’t come with p-values. It is a tool for model construction and 
comparison, while p-values are a tool for hypothesis testing.

That being said, I wouldn’t make you learn about F ratios if they couldn’t be 
used for hypothesis testing. And lmerTest, which as the name suggestions is 
designed to turn linear mixed effects models into hypothesis tests, wouldn’t 
give you the F’s if they weren’t useful for tests. So let’s do that now.

Also, there are other metrics for model evaluation and comparison that you 
should explore: adjusted R2, BIC, AIC, etc.



Null Hypothesis Significance Testing
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When people think of hypothesis testing, the first approach that comes to mind 
is Null Hypothesis Significance Testing.

NHST was not the first approach to statistics that was developed (Bayes 
Theorem is from 1763, Karl Pearson developed many components of statistics 
in the 1890s and 1900s, Gosset developed the t-test in 1908). NHST is also 
not the currently ascendant approach (Bayesian statistics are ascending).

But NHST dominated 20th century statistics (both in theory and practice) so it 
is still a standard approach in experimental psychology, and it is very much 
necessary for reading papers published in the last 75 years.

Pedagogically speaking, I am not sure if it is better to begin with NHST, and 
then move to Bayes, or better to start with Bayes, and then move to NHST. For 
now, I think it is safer to start with NHST, and move to Bayes if you are 
interested.

That way, even if you don’t have the time to look into Bayes in detail, you still 
have the NHST tools necessary to (i) publish papers, and (ii) read existing 
papers. You can cross the Bayes bridge if the field ever comes to it.



Two approaches to NHST
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It turns out that there are two major approaches to NHST. They are very 
similar in mathematical appearance, so it is easy to think that they are 
identical. But they differ philosophically (and in some details), so it is 
important to keep them separated.

Ronald Fisher was the first person to try to 
wrangle the growing field of statistics into a 
unified approach to hypothesis testing. His 
NHST was the first attempt, and may still be 
the closest to the way scientists think about 
NHST. We’ll start with the Fisher approach.

Jerzy Neyman 
(1894-1981)

Egon Pearson 
(1895-1980)

Ronald A. Fisher 
(1890-1962)

Neyman and Pearson were fans of Fisher’s 
work, but thought there were some 
deficiencies in his approach. So they tried to 
rectify that. It turns out that they simply had 
a different conception of probability and 
hypothesis testing. We’ll talk about the 
Neyman-Pearson approach second. 



Fisher’s NHST
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Under Fisher’s NHST, there is only one hypothesis under consideration. Perhaps 
ironically, it is the most uninteresting hypothesis you could consider. It is called 
the null hypothesis, or H0.

The null hypothesis. This states that there is no effect in your data 
(e.g., no difference between conditions, no interaction term, etc).

H0:

For Fisher’s NHST, the goal of an experiment is to disprove the null 
hypothesis.

“Every experiment may be said to exist only in order to give the facts a 
chance of disproving the null hypothesis.” - Fisher (1966)

To do this, Fisher’s NHST calculates the probability of the observed data under 
the assumption that the null hypothesis is true, or p(data|null hypothesis).

If p(data|null hypothesis), called the p-value, is low, then you can conclude 
either: (i) the null hypothesis is incorrect, or (ii) a rare event occurred.

This leads to Fisher’s disjunction:



Fisher’s NHST logic, stated a different way

 45

There are two steps to a statistical test under Fisher’s NHST approach:

Step 1: Calculate P(data | null hypothesis) 

Step 2: Make an inference about the null hypothesis

For Fisher, p(data | H0) is a measure of the strength of evidence against the 
null hypothesis. If it is low, that is either strong evidence against the null 
hypothesis, or evidence that something really rare occurred.

data1 
data2 
data3 
…

Data 
Generator

(assumes H0)

One way to think about this is that you 
are creating a data generating device 
that assumes the null hypothesis, and 
generates all possible data sets.

P(data | H0) =
observed data
generated data

Then you use the distribution of 
generated data to calculate the 
probability of the observed data



This logic is enough to interpret our results
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Once we have the logic of NHST, we can go back to the results that R and 
lmerTest gave us, and interpret those results. (Sure, it would be nice to be able 
to calculate the results for ourselves, but R does this for us.)

Here is the output of 
anova(wh.lmer) for 
both coding types:

The first thing to note is that in this case, our p-values are in scientific 
notation. This is because they are really small:

p = .00000000000000022

p = .00000000000000022

p = .00000000000009048

structure

length

interaction

These are incredibly small, so under Fisher’s logic, we say that there is either 
very strong evidence that the null hypothesis is false, or something very rare 
occurred (i.e., the null hypothesis is true, but we got a result at the very end of 
the distribution of possible null hypothesis results).



This logic is enough to interpret our results
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Once we have the logic of NHST, we can go back to the results that R and 
lmerTest gave us, and interpret those results. (Sure, it would be nice to be able 
to calculate the results for ourselves, but R does this for us.)

Here is the output of 
anova(wh.lmer) for 
both coding types:

The second thing to note is that these p-values are based on the F statistics 
that lmerTest calculated for each effect.

F1 
F2 
F3 
…

Data 
Generator

(assumes H0)

In principle, you can use any summary 
statistic you want (and you may know that 
there are many summary statistics in the 
literature). You could even use the sample 
mean.

The F is a nice statistic to use because it gives us even more information than 
just a p-value — remember, it tells us how much value we got for that df.



This logic is enough to interpret our results
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Once we have the logic of NHST, we can go back to the results that R and 
lmerTest gave us, and interpret those results. (Sure, it would be nice to be able 
to calculate the results for ourselves, but R does this for us.)

Here is the output of 
anova(wh.lmer) for 
both coding types:

Finally, note that the readout puts asterisks next to the p-values to tell you if 
they are below .05, .01, etc. 

We will talk about this more later, but in a nutshell, the Neyman-Pearson 
approach asks whether the p-value is below a pre-specified threshold. The 
exact number doesn’t matter, it is just whether it is below the threshold. These 
asterisks implement several common thresholds.

It is tempting to think of this as just a nice way to quickly visualize the results, 
but there is something much deeper going on here. The precise p-value is 
necessary for the Fisher approach to NHST, the asterisks are there for the 
Neyman-Pearson approach.



The logic of Fisher p-values
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But if you are going to use p-values, you need to be clear about what the p-
value is telling you. It is the probability of obtaining the observed results, or 
results more extreme, under the data generation model of the null 
hypothesis). 

Here are some other bits of information you may want to know. Unfortunately, 
p-values are not these other things:

1. The probability of the null hypothesis being true: p(H0 | data)

2. The probability of your hypothesis of interest being true: p(H1 | data)

3. The probability of incorrectly rejecting the null hypothesis (a false rejection).

4. The probability that you can replicate your results with another experiment.

The problem is that plenty of people think that p-values give these bits of 
information. That is false. There are literally dozens of papers out there trying 
to correct these misconceptions. 

First and foremost, p-values are only one small piece of information. You also 
have your graphs, the model coefficients, and evaluation statistics like F.



The math underlying NHST
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Though the logic is enough to interpret the results that R and lmerTest give us, 
you may want to study the math that NHST approaches use to generate the 
reference distribution for the null hypothesis. It will give you the flexibility to 
run (and even create) your own analyses, and it will help you understand the 
hypothesis tests at a deeper level. 

Randomization methods. 

Most people imagine analytic methods when they think of stats. The idea 
here is that there are test statistics whose distribution is invariant under 
certain assumptions. We can use these known distributions to calculate p-
values analytically (with an equation).

There are basically three approaches to generating the null reference 
distribution in NHST. I will review each briefly in the next few slides:

1.

Bootstrap methods.2.

Analytic methods.3.

The basic idea is to take your observed data points, and randomize the 
condition labels that you attach to them.

The basic idea is to use your sample as a population, and sample from it to 
generate a (population-based) reference distribution.



Randomization Methods
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Let’s use an example to demonstrate how to generate a reference distribution 
for the null hypothesis using randomization. Let’s focus on two conditions for 
simplicity:

What do you think that Jack stole __?

What do you wonder whether Jack stole __?*

control:

target:

Here is the critical insight of randomization tests: Even though I have labeled 
these observations control and target, under the null hypothesis they are all 
just from the same label, null. So, this assignment of labels is arbitrary under 
the null hypothesis. And if the assignment is arbitrary, then I should be able to 
randomly re-arrange the labels.

Randomly assign labels 
to these points because 
these labels are arbitrary 
under the null hypothesis.



Randomization: generating the distribution
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Start with the 
full data set

Then we repeat the process. With small samples, we can create every possible 
combination of labels, and have a complete distribution of possible test 
statistics. With large samples, this isn’t possible, so we collect a large number 
of randomizations, like 10,000, and approximate the distribution.

Randomly 
assign labels

Calculate the 
test statistic

xc̄ = 1

xt̄ = .3
xc̄-xt̄ = .7

… to completion or 10,000

xc̄-xt̄ = -.5

xc̄-xt̄ = .3

We then collect all of the 
test statistics together to 
form a reference 
distribution under the 
null hypothesis.

See randomization.r for 
code to do this!



Randomization: calculating a p-value
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Now that we have a reference distribution, we ask the following question: What 
is the probability of obtaining the observed result, or one more extreme, given 
this reference distribution?

We say “or one more extreme” for two reasons. First, we can’t just ask about 
one value because our response scale is continuous (most likely, the probability 
of one value is 1/the number of values in our distribution). Second, if we have 
to define a bin, “more extreme” results make sense, because those are also 
results that would be less likely under the null hypothesis.

p =
observations equal, or more extreme + 1

randomly sampled randomizations + 1

p =
observations equal, or more extreme

number of randomizations

If you calculated all possible randomizations, then you can use this formula for 
p-values:

If you randomly sampled the randomizations, then the above will 
underestimate the true p-value (because your sampled distribution is missing 
some extreme values). You can correct for this by adding 1 to the numerator 
and denominator: 



Randomization: More info
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Randomization tests are incredibly powerful and incredibly flexible. I would say 
that if you want to do pure NHST, without mixed effects, then randomization 
tests should be your first choice.

Even Fisher admitted that randomization tests should be the gold standard for 
NHST. But in the 1930s, computers weren't accessible enough to make 
randomization tests feasible for anything but very small experiments. So he 
developed analytic methods for larger experiments. But he said that the 
analytic methods are only valid insofar as they give approximately the same 
result as randomization methods.

The best reference for randomization tests is Eddington and 
Onghena (now 2007), Randomization Tests. Be warned that it is 
written like a reference, and not like a textbook. But if you need to 
know something about randomization tests, it is fantastic.

For a textbook experience, I like Zieffler, Harring, and Long’s (2011) 
Comparing Groups: Randomization and Bootstrap Methods 
using R. It is an introduction to NHST using Randomization and 
Bootstrap methods, which is a nice idea in the computer age.



Inferences: samples vs populations
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If you want to make causal inferences about whether your treatment had an 
effect in your sample,  you have to randomly assign units to treatments. 

If you can’t randomly assign your units to treatments, you can’t be sure that 
your treatment is causing the effect. The effect could be caused by properties 
of the two groups.

If you want to make inferences about populations, you have to randomly 
sample the units from the population.

If you can’t randomly sample your units, you can’t be sure that your results 
hold for the entire population. You can still make inferences about your 
sample, which is generally all you want to do anyway, but you can’t claim that 
your treatment will have an effect in a population.

As the name implies, randomization tests assume that you randomly assigned 
units to treatments. And because of this assumption, randomization tests allow 
you to make causal inferences about the effect of your treatment in the 
sample.

If you want to make claims about a population, then you can’t use 
randomization tests. You have to add the idea of sampling from a population to 
the test. What you want are bootstrap methods.



Bootstrap methods
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Randomly sample your participants (or other experimental units) 
when running your experiment. This is necessary if you want to 
make inferences about population parameters from the samples.

Step 1:

Choose a test statistic. Usually this is the mean, but it could be 
one of the other possible statistics.

Step 2:

Define the null hypothesis as no difference between population 
parameters, e.g., µA - µB = 0

Step 3:

Let’s assume that we did randomly sample (not true, but let’s assume it for 
demonstration purposes, and let’s use means/mean differences for our test 
statistic.

If you are running a bootstrap, I assume you are interested in making 
inferences about populations. Here are the first three steps:



Bootstrap methods
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Define the single population under the null hypothesis.Step 4:

This is our first tricky step. We don’t have an empirical measurement of our 
population. If we did, we wouldn’t need to sample from it! So what do we do?

Well, we can use our experimental sample as an approximation because it was 
randomly sampled.

Under the null hypothesis, we only have one population, so that means we can 
combine all of the values from both conditions together into one group:

+
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Calculate the reference distribution for your test statistic under 
the null hypothesis (one population).

Step 5:

This is our next tricky step. We want to use our sample as an approximation of 
our distribution. This means randomly sampling from our sample in order to 
derive a reference distribution.

In this case we want to randomly sample with replacement, which means that 
after each participant is selected, we replace it so that it could be selected 
again in the very same sample! Up until now, we have been sampling without 
replacement, which means that each participant could only be selected once 
per sample.

with replacement without replacement

{1,2,3}, choose 2 {1,2,3}, choose 2

{1,2} 
{1,3} 
{2,3}

{1,2} 
{1,3} 
{2,3}

{1,1} 
{2,2} 
{3,3}

We do this to approximate a population that is much larger than our sample 
(possibly infinitely large). Values will still be chosen according to their 
probability, but they won’t artificially disappear because our sample size is 
small.
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Calculate the reference distribution for your test statistic under 
the null hypothesis (one population).

Step 5:

So here is what we do:

First, we randomly sample with replacement two samples from our observed 
sample. We call these bootstrap replicates. They are replicates because they 
are other possible samples that we could have obtained in our experiment. 
They are bootstrap replicates because this procedure is called the bootstrap 
method. 

Second, we calculate the mean for each bootstrap replicate, and then calculate 
the mean difference.

Third, we save this mean difference (as the first value in our reference 
distribution).

Then we repeat this process a large number of times (e.g., 10,000) to derive a 
reference distribution called the bootstrap distribution. 



Bootstrap methods

 60

Calculate the probability of your observed statistic (e.g., 
difference between means in your experiment), or one more 
extreme, from your reference distribution.

Step 6:

Now that we have a reference distribution that approximates the exact 
distribution pretty well, all we need to do is use our old formula (plus 
correction) to calculate the p-value:

p =
outcomes equal, or more extreme + 1

randomly sampled outcomes + 1

What we’ve just done is called a non-parametric bootstrap, because we 
didn’t make any assumptions about the parameters of the population. Instead, 
we used our (combined) sample as a proxy for the population.

A parametric test is one in which the parameters of the 
population are known (or assumed)

Parametric:

A non-parametric test is one in which the parameters of 
the population are unknown (or not assumed)

Non-parametric:
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The parametric bootstrap has the same steps as the non-parametric bootstrap. 
The only difference is in the population that the replicates are drawn from!

1. Define a population to draw the replicates from:

non-parametric: the sample 
is used as a proxy

parametric: a probability model for 
the population with certain parameters

2. Sample with replacement from the population to derive a reference 
distribution.

3. Calculate the probability of the data given the reference set.
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The only challenge in the parametric bootstrap is picking the correct probability 
model for your population. How do you know what parameters to pick?

In principle, you could pick any probability model that you think underlies the 
generation of your data. In practice, if you are ever doing one of these 
analyses, you will probably choose a normal distribution.

The normal distribution is the “bell curve”. It has 
some useful properties that make it a good choice 
for many applications:

It is the probability model underlying a large 
number of phenomena.

1.

It can be completely parameterized with 2 
parameters: the mean and the standard 
deviation using the following equation:

2.

0.0

0.1

0.2

0.3

0.4

-6 -3 0 3 6
values

de
ns
ity



0.0

0.1

0.2

0.3

0.4

-10 -5 0 5 10
values

de
ns
ity

A parametric bootstrap

 63

The only problem with the normal distribution is that it is a family of 
distributions. Every member of the family follows the equation, but they each 
use a different value for the mean and standard deviation:

µ=0 
σ=1

µ=3 
σ=2

µ=-2 
σ=3

Believe it or not, these are 
all normal distributions.

The difference is that each 
one has a different mean 
(so a different location on 
the x-axis), and a different 
standard deviation (a 
different width on the x-
axis, which also means a 
different height). 



A parametric bootstrap

 64

Instead of trying to guess the mean and standard deviation, you can use the 
standard normal distribution, which is just a normal distribution with a 
mean of 0, and a standard deviation of 1. It is easy to work with.
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distribution: z-scores appear again!

 65

It is easy enough to use the standard normal distribution as our probability 
model for the population. R even gives us the built-in function rnorm(), which 
randomly samples from the standard normal distribution by default.

The problem is that our observed values are not on the same scale (the mean 
of the combined group of both of our condition is not 0). So we won’t be able 
to compare our observed values to the reference distribution.

This is actually easy to fix. We can simply convert the values in our combined 
group into the standard normal distribution scale using our old friend the  
z-score transformation.

In this case, we are applying the z-score transformation to our combined data 
set (the thing that represents the full population), not each participant. That’s 
the only difference. It is the same equation:

Z =
X - mean

standard deviation

The result is that each value will be equal to its distance from the mean (as if 
the mean were 0), and that distance will be measured in units equal to the 
standard deviation. So our observed values will be on the same scale as our 
reference distribution!
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First, we randomly sample with replacement two samples from our probability 
model. We call these bootstrap replicates. They are replicates because they 
are other possible samples that we could have obtained in our experiment. 
They are bootstrap replicates because this procedure is called the bootstrap 
method. 

Second, we calculate the mean for each bootstrap replicate, and then calculate 
the mean difference.

Third, we save this mean difference (as the first value in our reference 
distribution).

Then we repeat this process a large number of times (e.g., 10,000) to derive a 
reference distribution called the bootstrap distribution. 

Now that we’ve decided on a probability function, and re-scaled our observed 
data, we simply carry out the bootstrap procedure like before:

Finally we calculate a p-value using the standard formula (and correction).

The script bootstrap.r contains code to run both a non-parametric and 
parametric bootstrap.
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Because randomization and bootstrap methods are so computationally 
intensive, early 20th century statisticians could not use them. These people 
were smart. They developed analytic methods that give approximately the 
same result as randomization and bootstrap methods. And then shared them 
with the world.

The basic idea of analytic methods is that we need test statistics that have 
known, or easily calculable, reference distributions. We can’t use the mean, 
because the distribution of the mean will vary based on the experiment (the 
data type, the design, etc). We need statistics that are relatively invariant, so 
that we can calculate the distribution once, and use it for every experiment in 
all of the different areas of science.

There are both parametric and non-parametric analytic methods, just like 
there are both parametric and non-parametric bootstrap methods. And there 
are a ton of different test statistics with different properties that are suited for 
different experimental situations.

For pedagogical reasons, I am going to focus on the F statistic.
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The error terms in the linear model are normally 
distributed (which will be true if the population(s) of 
participants are normally distributed)

The observed responses are independent (in repeated-
measures designs this means the pairs of responses 
are independent)

The variances of the samples are equal 
(homogeneous). This is always true when the null 
hypothesis is true, but also must be true when the null 
hypothesis is false.

Normally 
distributed errors:

Independence:

Homogeneity of 
variance:

When people talk about parametric statistics, there is a typical cluster of three 
assumptions that they usually have in mind. The F statistic is parametric in this 
way - its distribution is predictable only if these assumptions are met:

Participants are randomly sampled from a populationRandom Sampling:

There is a fourth assumption that typically accompanies these four under the 
rubric “parametric”, but it is not about the distribution of the statistic. It is 
about the inferences that can be drawn from it.
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The distribution of the F statistic (called the Fisher-Snedecor distribution), is 
useful for analytic methods because it does not vary based on things like the 
mean or scale of the data. Instead, it is completely determine by two numbers, 
typically called df1 and df2, or dfnum and dfden, because of their relationships to 
the degrees of freedom in our calculation of F. 

If you want the equation for the 
probability density function, you 
can see it on the wikipedia page for 
the F distribution: https://
en.wikipedia.org/wiki/F-distribution. 
It is fairly complicated, so I won’t 
reproduce it here. But I will show 
you how the distribution varies with 
different dfs. In a 2x2, our df will be 
1, as in the left figure. I include the 
right just to show you the full range 
of the F distribution. These plots are 
in f.distribution.r.

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex

F = 
dfnum = dfsimple - dfcomplex 

dfden = dfcomplex 
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https://en.wikipedia.org/wiki/F-distribution


The ANOVA approach to F

 70

The term ANOVA is just another way of saying F-test. It is actually the primary 
way, because most people think about tests, not about the statistics that they 
are using in that test. 

ANOVA stands for ANalysis Of VAriance. What you should be thinking at this 
point is that we have never once discussed analyzing variance, so how is it 
that the F-tests that we have been discussing are analyses of variance?  

Well, it turns out that there is a completely different, but equally valid, way of 
thinking about the F-ratio. Instead of a measure of error minimization per 
degrees of freedom, you can think of it as a ratio between two estimates of the 
population variance: the numerator is an estimate based on the sample 
means, and the denominator is an estimate based on the sample variance. 
(Don’t worry, this will make more sense soon!)

estimated σ2, based on sample means

estimated σ2, based on the two sample variances
F =

This is mathematically equivalent to the model comparison approach that I 
taught you, but conceptually different. I prefer model comparison; but most 
stats courses prefer the analysis of variance method. So now I will connect 
them for you!
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The first thing to realize about what we’ve been doing so far is that we’ve seen 
two ways to use samples to estimate the variance of a population. 

Use the variance of the sample as an estimate

s2 =
Σ(Yi - Ȳ)2

Option 1:

Recall from our first lecture that the variance of a sample (s2)can be used as 
an unbiased estimate of the population variance (σ2) if we use (n-1) in the 
calculation: 

(n-1)
= estimate of σ2

In the case of an independent measures ANOVA, you actually have two 
samples! So you can come up with an even better estimate of σ2 by averaging 
the two estimates! (If one estimate is good, the average of two estimates will 
be better!) Here is a formula to let you do that for two samples:

(n1-1)s12 + (n2-1)s22

(n1-1) + (n2-1)
mean s2 =
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The first thing to realize about what we’ve been doing so far is that we’ve seen 
two ways to use samples to estimate the variance of a population. 

Use the variance of two (or more) meansOption 2:

Now, this estimate you probably didn’t even notice. The basic idea has two 
steps.

First, the variance of two (or more) means provides an estimate of the 
variance of the sampling distribution of means (the variability in all of the 
means that you could get if you repeatedly sampled from a population: σȲ2).

estimate of σȲ2 = 
Σ(Ȳj - Ȳ)2

(j-1)

Second, the variance of sampling means (σȲ2) can be used to calculate the 
population mean:

σȲ2 =
σ2

n
therefore, σ2 = n(σȲ2)
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Based on sample means 
aka numerator 
aka between groups

Based on sample variance 
aka denominator 
aka within groups
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We call the estimated variance based on the sample variances (Option 1) the 
Within Groups Mean Squared Error, or MSW.

The reason we call it this is because “mean squared error” is just another way 
to say variance; and it was an estimate that was calculated by averaging the 
variance of the two groups (within the groups).

Assuming that variances are equal in both groups regardless of the hypothesis 
(null or alternative), which is an important assumption of ANOVAs, the MSW 
will not change based on whether the null hypothesis is true or false! 

We call the estimated variance based on the sample means (Option 2) the 
Between Groups Mean Squared Error, or MSB. This is because it used the 
variance between the means of the two groups to estimate the variance (mean 
squared error) of the population.

Now here is the neat thing. The MSB will absolutely change depending on 
whether the null hypothesis is true or false. If the null hypothesis is true, then 
this estimate will be approximately the same as MSEWG. But if the the null 
hypothesis is false, this estimate will be larger. This is because the two means 
don’t come from the same population, so they will likely be more different than 
two means that come from the same population.
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Within Groups 
Null Hypothesis is False

Within Groups 
Null Hypothesis is True
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And now, yet another mind blowing moment:

F =
MSB

MSW

Yup, the ratio between the estimate of the population variance based on mean 
variation and the estimate of the population variance based on sample 
variances is identical to the F-ratio that we’ve been talking about!

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex

F = 

We call the way we’ve been talking about the F-ratio the model comparison 
approach, because it emphasizes the comparison of two models. We call the 
new approach the analysis of variance approach, hence ANOVA. They are 
mathematically equivalent (I will leave it to you to work out the math), and 
they are equally valid for defining the F statistic for a test. Although I prefer 
using the model comparison approach, both are equally valid ways of thinking 
about F-tests.

Since MSB gets larger when the null hypothesis 
is false, F will be larger (and will be close to 1 
when the null is true).
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We haven’t looked at t-tests at all in this class, but some of you may have 
heard of them. A t-test is a way of comparing one mean to 0, or two means to 
each other, using the t-statistic. What you may find interesting is that F and t 
are related. F is t2.

We can see this easily with 
our toy example from 
earlier. Let’s calculate both 
an F for these two models, 
and a t for the complex 
model versus the constant 
in the simple model.

Yi = εiβ0X0-i +

2 = -24 +

3 = -14 +

4 = 04 +

SS=5

Yi = εiβ0X0-i +

2 = -13 +

3 = 03 +

4 = 13 +

SS=2df=3 df=2

simple complex

t =
Ȳ - µ

s2

n

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex

F = = 
(5-2)/(3-2)

2/2
= 3 

= 
3 - 4

1
3

= -1.732051
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This is probably the best book on the model comparison 
approach to F-tests there is. It is also a beast of a book. But 
well worth it if you really want to understand F-tests. There is 
no R here. This is math.

Designing Experiments and Analyzing Data 
Maxwell and Delaney

This book is a comprehensive introduction to (analytic) 
statistics, and it is a great introduction to R (and plotting with 
R). It is very readable (and at times, amusing), and covers all 
of the things that are covered in fundamental statistics courses.

Discovering Statistics Using R 
Field, Miles, and Field


