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Remember the two representations?
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Important idea: EEG signals can be represented in two ways: the time 
domain representation and the frequency domain 
representation.



Time-frequency analysis of EEG
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Vectors
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Watch this video (~9 minutes): https://www.youtube.com/watch?
v=fNk_zzaMoSs&t=0s&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=2 

Watch this video up to 3:00: https://www.youtube.com/watch?v=k7RM-
ot2NWY&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=2  

Watch this video up to 4:00: https://www.youtube.com/watch?
v=LyGKycYT2v0&index=9&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab   

https://www.youtube.com/watch?v=fNk_zzaMoSs&t=0s&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=2
https://www.youtube.com/watch?v=fNk_zzaMoSs&t=0s&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=2
https://www.youtube.com/watch?v=k7RM-ot2NWY&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=2
https://www.youtube.com/watch?v=k7RM-ot2NWY&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=2
https://www.youtube.com/watch?v=k7RM-ot2NWY&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=2
https://www.youtube.com/watch?v=LyGKycYT2v0&index=9&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.youtube.com/watch?v=LyGKycYT2v0&index=9&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab


Vectors and EEG
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Does vector math (linear algebra) help us?
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Important idea: Math exists to help us. First we need to figure out what 
we want to achieve, and then we can look for math that 
achieves it for us.

So we have two questions: (i) what do we want to achieve?, and (ii) will vector 
math help us achieve it? If so, then we can treat the EEG signal like a vector to 
take advantage of vector math!

So let’s answer question 1. 

What we want to achieve is to 
calculate how similar our EEG 
signal is to a perfect sine 
wave of a specific frequency.  

(And then we want to check 
all of the other frequencies 
too! And then do it over 
time!)



The dot-product
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We want a measure of vector similarity
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What would it mean for two vectors to be similar? Let’s look at some 
examples, and decide what we would say about their similarity

1.

3.

2.

These two are perfectly similar. Maybe we 
make them the maximum of our similarity 
score. Maybe 100% or 1.

What about these? They are orthogonal to 
each other. They aren’t similar at all. Maybe 
give these a 0?

These two are perfectly similar, but 
opposites. Maybe we make them the 
maximum of our similarity score, but 
negative. Maybe -100% or -1.



Cosine is similarity based on angle.
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Cosine is a function that takes the angle 
between a vector and the x-axis, and returns 
the x-coordinate of the vector.

1.

3.

2.

If we assume blue is 1 unit long, and treat the 
red vector as the x-axis, the cosine of the angle 
of the blue will be the similarity values that we 
want.

cosine = 1

cosine = -1

cosine = 0

This is why you will often see different 
kinds of “cosine similarity” tests in 
stats, or read about how covariance is 
basically a scaled cosine.



Adding magnitude: projection
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Vectors have both direction and magnitude. Cosine is a measure of similarity 
that only takes direction into account. We want to add magnitude.

One thing we can do is scale the cosine by the magnitude of the blue vector, 
i.e., multiply cosine by the length of the blue vector.

𝜋/4
1

cos = .71

|blue| * cos ɵ

𝜋/4

2

cos = .71

|blue| * cos ɵ

1 * .71 = .71 2 * .71 = 1.42



Adding magnitude: projection
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This is the mathematical equation for projection. It is the length of the blue 
vector projected onto red vector (treating the red vector as an axis or basis).

𝜋/4
1

.71

projection = |blue| * cos ɵ

𝜋/4

2

1.42

Remember that we can decompose 
any vector into scalars and bases. 

[.71 .71]

.71 x .71 y

=

Projection says “treat the red vector as a basis, and decompose the blue one 
into its scalars… what is blue’s scalar in the red basis?” It tells us how much 
of the blue magnitude goes in the red direction.



Adding the other magnitude: the dot product
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Cosine tells us how similar two vectors are in 
direction. It ranges from -1 to 1.

𝜋/4

.71

But we still haven’t used the red magnitude. The dot product does this:

Projection tells us how much of blue’s magnitude 
goes in the red direction.

|blue| * cos ɵ

𝜋/4
1

.71

cos ɵ

dot product = |red| * |blue| * cos ɵ

The dot product scales the projection by the length of the red vector. In other 
words, it treats the red vector like a unit vector, and scales the projection to 
the length it should be if the red were the unit vector.



Dot-product is (unscaled) similarity
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The dot product combines both magnitude 
and direction into one equation for similarity: |red| * |blue| * cos ɵ

The trick to seeing it as a similarity measure is to realize that it is unscaled - 
it grows with the magnitudes of the vectors. But if you stick to a family of 
angles, you can see that their relative dot products encode similarity of both 
the directions and the magnitudes.

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
3 
1

3 * 3 * 1 = 9

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
2 
1

3 * 2 * 1 = 6

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
1 
1

3 * 1 * 1 = 3

3 * 3 * .71 = 6.4 3 * 2 * .71 = 4.3 3 * 1 * .71 = 2.1

cos ɵ = .71 cos ɵ = .71 cos ɵ = .71 



Dot-product is (unscaled) similarity

To see this, we can scale the dot product by 
the maximum product if the two vectors 
were equal in length.

|red| * |blue| * cos ɵ

The result is something that looks like a scaled similarity score (between -1 
and 1). And, crucially, it takes both magnitude and direction into account.

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
3 
1

(3 * 3 * 1)/9 = 1

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
2 
1

(3 * 2 * 1)/9= .67

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
1 
1

(3 * 1 * 1)/9 = .33

(3 * 3 * .71)/9 = .71 (3 * 2 * .71)/9 .48 (3 * 1 * .71)/9 = .24 

cos ɵ = .71 cos ɵ = .71 cos ɵ = .71 

max(|red|,|blue|)2



The result doesn’t care which is longer
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The dot product equation is symmetric. And 
the denominator for scaling chooses the 
largest value. 

This means that the result is the same, regardless of which vector is longer, 
both for the dot product itself (shown below), and for the scaled version (just 
divide by 9):

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
3 
1

3 * 3 * 1 = 9

|red| 
|blue| 
cos ɵ 

= 
= 
=

2 
3 
1

2 * 3 * 1 = 6

|red| 
|blue| 
cos ɵ 

= 
= 
=

1 
3 
1

1 * 3 * 1 = 3

3 * 3 * .71 = 6.4 2 * 3 * .71 = 4.3 1 * 3 * .71 = 2.1

cos ɵ = .71 cos ɵ = .71 cos ɵ = .71 

max(|red|,|blue|)2

|red| * |blue| * cos ɵ



Why not just use projection?

One could imagine taking the length of red 
into consideration differently… perhaps by 
calculating the projection, and dividing by it.

|blue| * cos ɵ

This looks just like the scaled dot product, so we might decide that this is an 
ok way to go…

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
3 
1

(3 * 1)/3 = 1

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
2 
1

(2 * 1)/3= .67

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
1 
1

(1 * 1)/3 = .33

(3 * .71)/3 = .71 (2 * .71)/3 .48 (1 * .71)/3 = .24 

cos ɵ = .71 cos ɵ = .71 cos ɵ = .71 

|red|
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But the result changes if we flip the lengths

One could imagine taking the length of red 
into consideration differently… perhaps by 
calculating the projection, and dividing by it.

|blue| * cos ɵ

The problem is that this equation is inherently asymmetric — it is the 
projection of the blue, scaled by the length of the red. To use this, we would 
always need to choose the longer vector as the “red”…

|red|

(3 * 1)/3 = 1 (3 * 1)/2 = .67 (3 * 1)/1 = 3

(3 * .71)/3 = .71 (3 * .71)/2 = 1.05 (3 * .71)/1 = 2.1

cos ɵ = .71 cos ɵ = .71 cos ɵ = .71 

|red| 
|blue| 
cos ɵ 

= 
= 
=

3 
3 
1

|red| 
|blue| 
cos ɵ 

= 
= 
=

2 
3 
1

|red| 
|blue| 
cos ɵ 

= 
= 
=

1 
3 
1
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To recap
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Cosine tells us how similar two vectors are in 
direction. It ranges from -1 to 1.

𝜋/4 .71

Projection tells us how much of blue’s magnitude 
goes in the red direction.

|blue| * cos ɵ

𝜋/4
1

.71

cos ɵ

Dot product gives us an unscaled, symmetric 
measure of similarity that takes direction and both 
magnitudes into consideration.

|red| * |blue| * cos ɵ

𝜋/4



Honesty — my trig is not good enough
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dot product = |red| * |blue| * cos ɵ

I know that these two equations are identical (for 2D vectors):

dot product = (x1*x2) + (y1*y2)

I can see that they will yield the same values by working through examples, 
but my trigonometry is not strong enough to derive one from the other.



Convolution  
(these slides only partially address the flipping 
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Convolution example from betterexplained.com
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There is a disease that has a treatment plan that takes three treatments. 
Treatment 1 is 3 pills, treatment 2 is 2 pills, and treatment 3 is 1 pill.

treatment 1 treatment 2 treatment 3

Now imagine you have a line of patients, organized by day.

day 1 day 2 day 3 day 4 day 5

How many pills do you need each day?

http://betterexplained.com


Convolution example from betterexplained.com
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To figure this out, we can arrange the people and the treatments in the right 
order — by flinging the people around into a line that can file through the 
treatments.

treatment 1 treatment 2 treatment 3

day 1

day 2

day 3

day 4

day 5

day 6

day 7

15 15

http://betterexplained.com


Convolution example from betterexplained.com
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To figure this out, we can arrange the people and the treatments in the right 
order — by flinging the people around into a line that can file through the 
treatments.

treatment 1 treatment 2 treatment 3

day 1

day 2

day 3

day 4

day 5

day 6

day 7

12 10

15 15

22

http://betterexplained.com


Convolution example from betterexplained.com

 24

To figure this out, we can arrange the people and the treatments in the right 
order — by flinging the people around into a line that can file through the 
treatments.

treatment 1 treatment 2 treatment 3

day 1

day 2

day 3

day 4

day 5

day 6

day 7

12 10

15

9 8 5

15

22

22

http://betterexplained.com


Convolution example from betterexplained.com
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To figure this out, we can arrange the people and the treatments in the right 
order — by flinging the people around into a line that can file through the 
treatments.

treatment 1 treatment 2 treatment 3

day 1

day 2

day 3

day 4

day 5

day 6

day 7

12 10

15

9 8 5

6 6 4

15

22

22

16

http://betterexplained.com


Convolution example from betterexplained.com
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To figure this out, we can arrange the people and the treatments in the right 
order — by flinging the people around into a line that can file through the 
treatments.

treatment 1 treatment 2 treatment 3

day 1

day 2

day 3

day 4

day 5

day 6

day 7

12 10

15

9 8 5

6 6 4

3 4 3

15

22

22

16

10

http://betterexplained.com


Convolution example from betterexplained.com
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To figure this out, we can arrange the people and the treatments in the right 
order — by flinging the people around into a line that can file through the 
treatments.

treatment 1 treatment 2 treatment 3

day 1

day 2

day 3

day 4

day 5

day 6

day 7

12 10

15

9 8 5

6 6 4

3 4 3

2 2

15

22

22

16

10

4

http://betterexplained.com


Convolution example from betterexplained.com
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To figure this out, we can arrange the people and the treatments in the right 
order — by flinging the people around into a line that can file through the 
treatments.

treatment 1 treatment 2 treatment 3

day 1

day 2

day 3

day 4

day 5

day 6

day 7

12 10

15

9 8 5

6 6 4

3 4 3

2 2

1

1515

22

22

16

10

4

1

total = 90

http://betterexplained.com


Euler’s formula for complex numbers
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Imaginary and complex numbers
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An imaginary number is the square root of a negative number. We define the 
unit i as the square root of -1, which allows us to calculate others:

√-1 = i √-9 = 3i √-25 = 5i

A complex number is a combination of a real number and an imaginary 
number, like this:

3 + 4i 2 - 5i 4 + 2i

Complex numbers can be used to define a coordinate system called the 
complex plane: the x-axis is the real component and the y-axis is the 
imaginary component:

real

imaginary
4 + 3i



The big insight of the complex plane
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The big insight of the complex plane is that one step i moves us off of the real 
axis onto the imaginary axis, and then another step i moves us back onto the 
real axis (-1).

real

imaginary

1

1i

-1

-1i

x ix i

x i x i



Cartesian and Polar coordinates
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Complex numbers of the form a + bi create a cartesian coordinate system. 
But there is another system called the polar coordinate system that is more 
useful for us.

real

imaginary

4 + 3i

The polar coordinate system defines a point based on the magnitude of the 
vector that is defined by that point (M), and the angle of that vector relative to 
the real axis (𝝷).

real

imaginary

M = 5 
𝝷 = .64 

cartesian polar



Cartesian and Polar coordinates

 33

We can convert between the two systems with some concepts from 
trigonometry. It is worth taking a moment to see the equivalence. 

real

imaginary

4 + 3i

M =   (real2 + imaginary2)

real

imaginary

M = 5 
𝝷 = .64 

cartesian polar

𝝷 = arctangent(imaginary/real) 

real

imaginary

= M cos(𝝷)

= M sin (𝝷)

a + ib = M cos(𝝷) + i M sin(𝝷) = M[cos(𝝷) + i sin(𝝷)]



Angles are in radians
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Remember that the angles used in polar coordinates are radians. Radians are 
about the length of an arc along the circumference swept by the angle — a 1 
radian angle sweeps an arc equal to the radius of the circle. The circumference 
of a circle is 2𝝿r, so there are 2𝝿 radians in a circle.

real

imaginary

M = 5 
𝝷 = .64 

polar

a + ib = M cos(𝝷) + i M sin(𝝷) = M[cos(𝝷) + i sin(𝝷)]

Radians are technically pure numbers, with no unit 
after them. This is because they are arc length / 
radius length, so length cancels out.



Euler’s formula for complex numbers
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Euler discovered a concise way to represent complex numbers: Mei𝝷 

To make life simpler, let’s assume that M = 1, so that it is just ei𝝷 and so that 
the cartesian form that we want to see is cos(𝝷) + i sin(𝝷). Let’s see if we can 
prove that these are equivalent.

Taylor series:

Taylor series 
with i: eix =

(iX)0 (iX)1 (iX)3(iX)2 (iX)4 (iX)5 (iX)6

0! 1! 2! 3! 4! 5! 6!
…+ + + + + +

ex =
X0 X1 X3X2 X4 X5 X6

0! 1! 2! 3! 4! 5! 6!
…+ + + + + +

1eix = + iX — — + + —
iX3X2 X4 iX5 X6

2! 3! 4! 5! 6!
…

The even exponents reduce the i component to become -1. 
The odd exponents reduce the i component to i.



Euler’s formula for complex numbers
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Taylor series 
with i: 1eix = + iX — — + + —

iX3X2 X4 iX5 X6

2! 3! 4! 5! 6!
…

Next, we group the real numbers and the imaginary numbers separately:

eix = 1 — + —
X2 X4 X6

2! 4! 6!
iX — +

iX3 iX5

3! 5!
… …—

iX7

7!( ) ( )+

cos X = 1 — + —
X2 X4 X6

2! 4! 6!
…( )

sin X = X — +
X3 X5

3! 5!
…—

X7

7!( )

eix = cos X + i sin X

These are just two known facts. 
They are called the Taylor series 
for cos and sin.

And this is what we wanted to prove. Euler’s 
formula is equivalent to standard cartesian formula.



Why complex wavelets?
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dot product with simple and complex numbers
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Ultimately we want to look at the dot product between a sine wave (our EEG 
signal) and a complex wavelet (a wavelet with both a real and imaginary 
component).

But to simplify things, let’s first look at simple two-dimensional vectors to see 
how the simple dot product and complex dot product work.

signal complex kernel

real

imaginary

The crucial thing to remember here is that we will ultimately want to keep the 
magnitude and the angle separate in our results. This is because 
magnitude represents EEG power, and angle represents phase.

simple kernel

real

But for now I just want to show you that the simple kernel combines 
magnitude and angle into a single number, while the complex kernel keeps 
them separate… which is what we will ultimately want.



dot product with simple kernels
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The dot product with the simple kernel, as the phase (angle) of the signal 
changes. All lengths are 1 to keep things simple.

phase difference

simple kernel

signal

0

dot product 1

𝝿/2

0

𝝿/4

.71

What we see is that the dot product combines angle similarity and magnitude 
similarity together into a single number. We already knew this from last time. 

Now, let’s look at complex kernels to see what happens there.



dot product with complex kernels
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The dot product with the simple kernel, as the phase (angle) of the signal 
changes. All lengths are 1 to keep things simple.

phase (real)

complex kernel

signal

0

dot (real) 1

𝝿/2

0

𝝿/4

.71

phase (imag)

dot (imag)

𝝿/2

0

complex dot 1 + 0i

0

1

0 + 1i

𝝿/4

.71 + .71i

.71

polar dot

M =   (real2 + imaginary2)

𝝷 = arctangent(imaginary/real) 

M=1 𝝷=0 M=1 𝝷=𝝿/2 M=1 𝝷=𝝿/4 



dot product with complex kernels
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The dot product with the simple kernel, as the phase (angle) of the signal 
changes. All lengths are 1 to keep things simple.

phase (real)

complex kernel

signal

0

dot (real) 1

𝝿/2

0

𝝿/4

.71

phase (imag)

dot (imag)

𝝿/2

0

complex dot 1 + 0i

0

1

0 + 1i

𝝿/4

.71 + .71i

.71

polar dot M=1 𝝷=0 M=1 𝝷=𝝿/2 M=1 𝝷=𝝿/4 

The polar notation captures the magnitude similarity in the M component, and 
the phase offset of the signal and the real component in the theta component.



Baselines
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Why not use the absolute baseline?
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For ERPs, we used an absolute baseline: we calculated the mean activity in 
the baseline window, and subtracted this from each data point in the epoch. 
This is a type of mean centering.

The absolute baseline allows us to see changes from (approximately) 0.

The problem with the absolute baseline for time-frequency analysis is that the 
different frequency bands have different relative power. This is just a fact of 
EEG (and of frequencies in general): lower frequencies have more power than 
higher frequencies.

gamma: >30

theta: 4-8

time

time

po
w

er
po

w
er

raw

time

time

po
w

er
po

w
er

absolute baseline



Logarithms
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I guess logarithms answer the question “What exponent would we need to 
convert one number (the base) into another (the argument)?”

= 3

= 2

log10(1000)

log10(100)

= 1log10(10)

= 0log10(1)

= undefinedlog10(0)

= -1log10(.1)

= -2log10(.01)

= -3log10(.001)

The general form is:

logB(X) = Y BY = X

Some examples:

Visualizing the effect of logs:

X X

Y

log(Y) = X log(10)

X Y

1 10

2 100

Y=10X

X log(Y)

1 1

2 2

3 1000 3 3

log(Y)

This is called a semi-log plot. The 
point is that logs make large 
numbers much smaller.



Small aside - logarithms and arithmetic
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One useful function of logarithms is to do arithmetic in exponential (or power-
law) space. We aren’t doing that here, but I want you to see it.

= 3

= 2

log10(1000)

log10(100)

= 1log10(10)

= 0log10(1)

= undefinedlog10(0)

= -1log10(.1)

= -2log10(.01)

= -3log10(.001)

Addition in logs is multiplication in 
raw numbers:

Some examples:

1000 100x = 100,000

log10(1000) + log10(100) = log10(100,000)

3 2+ = 5

Subtraction in logs is division in raw 
numbers:

1000 100/ = 10

log10(1000) - log10(100) = log10(10)

3 2- = 1



Bels and Decibels
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The bel is named for Alexander Graham Bell. It is a measure of relative power 
between two signals. Crucially, it is the log of the ratio of the power of the two 
signals:

log10(power1/power2)Bel: The common/decadic logarithm of 
the ratio of the power of two signals.

Bels are typically multiplied by 10 to form decibels in most human 
engineering systems, to make the numbers a bit larger (no decimals).

10 x log10(power1/power2)Decibel:

power1 power2 bel decibel

10 10

100 10

1000 10

20 10

1050

log10(power1/power2)

log10(10/10)

log10(20/10)

log10(50/10)

log10(100/10)

log10(1000/10)

0

1

2

ratio

1x

10x

100x

2x

5x

.3

.7

0

10

20

3

7



Small aside - sound intensity is dB
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The most common use of the term decibel in daily life is for the measurement 
of sound intensity.

But we just saw that decibel is a measure of relative power. 

1 x 10-12 watts/m2reference:

So what is the second signal in the measure of sound intensity?

It is the reference intensity, postulated as a threshold for human hearing at a 
frequency of 1000Hz. 



decibel change from baseline
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The decibel gives us our second baseline option (after the absolute baseline): 
the decibel change from the baseline period.

dbtf = 10 x log10( )activitytf

baselinef

Take the mean of the baseline period, 
calculate the ratio of the activity and 
this baseline mean, then take the 
logarithm, then multiply by 10.

The fact that it is a ratio (division) means that it is the 
activity relative to the baseline. If it were the pure ratio, 
a ratio of 1 would mean identity, 2 would mean 2x as 
big, etc.

ratio/division:

The fact that it is a logarithm means that growth is 
dampened — large numbers will have less of an impact. 
This helps correct for the inherent difference in power 
between frequency bands. It also means that a ratio of 1 
is 0, so 0 becomes the identity value.

logarithm:

multiplication? We multiply by 10 to make the scale a little easier to 
work with. 0 is still the identify value.



percentage change from baseline
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Our third baseline option is percentage change: how much does the activity 
differ from the baseline in terms of a percentage (or proportion) of the 
baseline:

percentagetf = 100 x
activitytf

baselinef

The subtraction is a type of mean centering. It 
transforms the activity into a change from the baseline

subtraction:

This just turns the proportion into larger numbers, 
potentially eliminating decimals.

percentage

no logarithm: There is no logarithm, so the scale is linear. This is a 
weaker correction for inherent power differences.

baselinef-

The division transforms the change from the baseline 
into a proportion based on the baseline activity.

ratio/division:
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With ERPs, we use the absolute baseline (subtraction). This is a linear 
transformation, so we can apply it at any stage of the analysis.

trial pre post

1 5 7

2 4 6

3 3 5

baseline

trial pre post

1 0 2

2 0 2

3 0 2

average

pre post

0 2

trial pre post

1 5 7

2 4 6

3 3 5

pre post

4 6

pre post

0 2
average baseline

So, we have never had to think about when the right time to baseline is. But, 
crucially, these are different numbers - the average of baselined trials, 
versus a baselined average.
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Let’s try it with decibel change. They are not perfectly identical. This is partly 
due to division, and partly due to the logarithm. But which is correct?

trial pre post

1 5 7

2 4 6

3 3 5

baseline

trial pre post

1 0 1.46

2 0 1.76

3 0 2.22

average

pre post

0 1.81

trial pre post

1 5 7

2 4 6

3 3 5

pre post

4 6

pre post

0 1.76
average baseline

In general, it is best to average first, then baseline. But this is not due to any 
deep principle. It is just because TF results vary more than ERPs across trials.
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Let’s try it with percent change. They are not perfectly identical. This is due to 
division. But which is correct?

trial pre post

1 5 7

2 4 6

3 3 5

baseline

trial pre post

1 0 40

2 0 50

3 0 67

average

pre post

0 52.3

trial pre post

1 5 7

2 4 6

3 3 5

pre post

4 6

pre post

0 50
average baseline

In general, it is best to average first, then baseline. But this is not due to any 
deep principle. It is just because TF results vary more than ERPs across trials.


