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What is an experiment?
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The experimental 
method:

Manipulate one variable to elicit a change in a second 
variable. The goal is to establish a causal relationship 
between the first variable and the second.

In syntax, the causal relationship we want to establish is between 
grammatical properties (structures, features, etc) and acceptability judgments.

The point of an experiment is to demonstrate this relationship while controlling 
for any possible confounds - effects that either (i) obscure the relationship 
you want to establish, or (ii) create the illusion of a relationship where none 
exists. Confounds can come from the grammar, other cognitive systems that 
influence acceptability judgments, the judgment task itself, and noise.

Acceptability +Grammar +
memory parsing

world thought Noise

Task Effects



Traditional vs. Formal 
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The traditional approach to data collection in syntax is already experimental. 
Syntacticians already know how to construct an experiment. So we need to be 
clear about why we want to use formal experiments instead.

Create conditions

Create items

Order the items for presentation

Choose a task

Recruit participants

Explore/Analyze the results

Report the results to others

Establish a linking hypothesis1.

2.

3.

4.

5.

6.

7.

8.

Traditional Formal



Traditional vs. Formal 
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Theoretical syntacticians are trained to design experiments that demonstrate 
the causal relationship of interest while controlling for grammatical confounds 
and other cognitive confounds.

Acceptability +Grammar +
memory parsing

world thought Noise

Task Effects

Experimental syntax simply wants to add methods for controlling task effects 
and quantifying noise to this.

Acceptability +Grammar +
memory parsing

world thought Noise

Task Effects



But what if you aren’t worried about task 
effects and noise?

 7

Comparisons of traditional experiments 
and formal experiments have yielded 
nearly identical results. This suggests that 
traditional methods haven’t been led 
astray by task effects or noise.

Three potential advantages of formal experiments:

1. Study smaller effect sizes.

2. Use more complicated designs.

3. Derive numbers.
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All experiments need a linking hypothesis

 8

A linking hypothesis postulates a link between an observable measure and 
an unobservable construct. Linking hypotheses can’t be directly tested 
(because one side of the link is unobservable). We decide that a linking 
hypothesis is reasonable by adopting it for a while, constructing a theory from 
the resulting data, and deciding if that theory seems reasonable.

Acceptability +Grammar +
memory parsing

world thought Noise

Task Effects

observable

unobservable

The linking hypothesis for acceptability judgments is whatever our theory of 
acceptability judgments is. At the very least, we assume that grammatical 
status affects acceptability. This lets us use acceptability to study grammar.



Linking hypotheses are helpful for framing

 9

instruction items 
practice items 
filler items  
order the items

Acceptability +Grammar +
memory parsing

world thought Noise

Task Effects

experimental conditions

pre-processing 
analyze results

Linking hypotheses can be useful as more than just a background assumption. 
Once you make your hypothesis explicit, you can begin to see how the 
different parts of your experiment are designed to minimize confounds.

Acceptability = grammaticalFactors + processingFactors + taskFactors + noise

And, you can see that your linking hypothesis is 
really an equation… a fact that will become very 
useful when we do statistics:
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Conditions: Treatments and Controls

 11

The terminology in experiments is borrowed from medicine.

A treatment, or treatment condition, is something that you do to the 
participant to see what happens. In syntax, a treatment would be the 
presentation of a sentence with a specific set of syntactic properties. We want 
to see how the treatment affects the participant’s acceptability judgments. 

A control condition is a lack of treatment. In syntax, this would be the 
presentation of a sentence without the specific set of syntactic properties 
under investigation. The control condition serves as a baseline to help rule out 
other explanations (confounds) for any treatment effect that we see.

So, the conditions in your experiment are the sentence types that you are 
going to present to your participants.

N.B. - Because medical terminology sounds strange in cognitive science, the 
term “treatment” is rarely used. We typically just talk about the conditions of 
the experiment. People sometimes use the term “target condition” or 
“experimental conditions”, which can mean treatment conditions or treatment 
& control conditions, depending on the context. (It is often used to distinguish 
these conditions from “filler” conditions.) 



Creating a treatments and controls

 12

The fundamental logic in the creation of treatments and controls is that you 
want to create a minimal pair: a treatment condition and a control condition 
that vary by one property (the syntactic manipulation of interest).

AcceptabilityT-C = treatment + processingFactors + taskFactors + noise

If we subtract the acceptability of the two conditions, all that remains is the 
treatment effect.

AcceptabilityC-C = treatment + processingFactors + taskFactors + noise

AcceptabilityT-C = treatment + processingFactors + taskFactors + noise

AcceptabilityC-C = treatment + processingFactors + taskFactors + noise

AcceptabilityT-C = treatment



Pairs work in many simple cases
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The first design you should consider is a simple pairwise comparison: one 
treatment condition and one control condition.

treatment:

control:

The children is tired.

The children are tired.

AcceptabilityT-C = treatment + processingFactors + taskFactors + noise

AcceptabilityC-C = treatment + processingFactors + taskFactors + noise

AcceptabilityT-C = agreement violation

agreement declarative
length (4 words)

declarative
length (4 words)



What about when pairs aren’t enough?
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Let’s say you were interested in studying Whether Island effects in English, so 
you construct the obvious treatment condition - a whether island violation:

What do you wonder [whether Jack stole __]?*whether island:

*

To determine what the best control will be, we first need to look at everything 
in the sentence that could affect acceptability. We can again use our linear 
equation for this:

Acceptability = grammaticalFactors + processingFactors + taskFactors + noise

island violation wh-movement (2 clauses)

whether clause

length (7 words, 2 clauses)

To reiterate, the best control would be a sentence that has all of the same 
properties, except for the island violation (a minimal pair). 



Let’s try a couple of potential controls
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What do you wonder [whether Jack stole __]?*whether island:

AcceptabilityT-C = island violation + wh-movement + whether clause + 7-words

What do you think [that Jack stole __]?that-control:

AcceptabilityC-C = island violation + wh-movement + that clause + 7-words

AcceptabilityT-C = island violation + (whether clause - that clause) 

So this would not be a good control, because the effect that it shows us is 
confounded: it includes the difference between whether and that clauses.



Let’s try a couple of potential controls

 16

What do you wonder [whether Jack stole __]?*whether island:

AcceptabilityT-C = island violation + wh-movement-long + whether clause

Who __ wonders [whether Jack stole a necklace]?whether-control:

AcceptabilityC-C = island violation + wh-movement-short + whether clause

AcceptabilityT-C = island violation + (wh-long - wh-short) 

So this would not be a good control, because the effect that it shows us is 
confounded: it includes the difference between long and short wh-movement.



The problem and its solution

 17

The problem we face is an empirical one. We can’t take away the island 
violation and keep everything else constant.

To take away the island violation, we either need to take away the whether 
clause, or we need to take away the long-distance dependency.

Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

Structure Dependency

non-island

non-island

island

island

short

short

long

long

So the solution is to have multiple controls. But we have to be clever about 
this. We have to construct the controls in such a way that all of the effects that 
we want to eliminate will subtract out in the end. We can do this with four 
conditions:



This is called a crossed factorial design
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Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

A dimension/property that you can manipulateFactor:

The values that a factor can takeLevel:

Structure Dependency

non-island

non-island

island

island

short

short

long

long

The factors above are STRUCTURE and DEPENDENCY-LENGTH. Factors are often 
written in small caps in papers.

The values for STRUCTURE are non-island and island; the values for DEPENDENCY-
LENGTH are short and long.

This is called a crossed design because every level of each factor is combined 
with every level of the other factors.



The subtraction logic
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Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

Structure Dependency

non-island

non-island

island

island

short

short

long

long

Acceptability4-C = violation + long + island

Acceptability2-C = violation + long + non-island

Acceptability3-C = violation + short + island

Acceptability1-C = violation + short + non-island

Acceptability4-2 = violation + long + (island - non-island)

Acceptability3-1 = violation + long + (island - non-island)



The subtraction logic

 20

Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

Structure Dependency

non-island

non-island

island

island

short

short

long

long

Acceptability4-2 = violation + long + (island - non-island)

Acceptability3-1 = violation + long + (island - non-island)

AcceptabilityDD = violation 

The final step is to subtract the two differences (that we calculated in step 
one) from each other. This is called a differences-in-differences score.  

Critically, the crossed factorial design and the two-step subtraction logic allows 
us to isolate the violation despite its co-occurrence with the two other factors!



The visual logic of differences-in-differences

1.

2.
3.

4.
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Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

Structure Dependency

non-island

non-island

island

island

short

short

long

long

Acceptability4-2 = violation + (isl - non-isl)

Acceptability3-1 = violation + (isl - non-isl)

AcceptabilityDD = violation 

short long

If there is a violation present, the two lines 
will not be parallel because the two 
differences are different sizes.



The visual logic of differences-in-differences
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Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

Structure Dependency

non-island

non-island

island

island

short

short

long

long

1.

2.
3.

4.

Acceptability4-2 = violation + (isl - non-isl)

Acceptability3-1 = violation + (isl - non-isl)

AcceptabilityDD = violation 

short long

If there is no violation present, the two lines 
will be parallel because the two differences 
are the same size.



The logic of differences-in-differences
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1.

2.
3.

4.

short long

It is important to be clear about what you can and cannot interpret from these 
two patterns of results.

1.

2.
3.

4.

short long

If the lines are parallel, there is no evidence of a 
violation at work. This is because we designed our 
experiment so that we could control for the effects 
of our two factors, isolating the effect of the 
violation (to condition 4).

If the lines are not parallel, there is evidence that 
something is affecting acceptability above and 
beyond our two factors. This could be a violation 
(or it could be something else, like a processing 
effect that arises from the interaction of the two 
factors). One way to think about this is that non-
parallel lines is necessary, but not sufficient, for 
establishing the existence of a violation effect.



This is called a 2x2 design
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Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

Structure Dependency

non-island

non-island

island

island

short

short

long

long

The terminology here is that each digit represents a factor. Since there are two 
digits (2 and 2), there are two factors in this design.

A 2x3 design would have two factors, one with two levels and one with three.

And the value of each digit represents the number of levels for that factor. 
Both factors in this design have two levels, so both digits are 2.

A 2x2x2 design would have three factors, each with two levels.



A 2x2 design can quantify 3 effects

Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

isolate  
dependencyisolate 

structure

dep + struc + X (1-4)

+ +

This means that we can specifically state 
the contribution of these three effects. I 
am treating condition 1 as a neutral or 
baseline condition, and calculating the 
effects relative to condition 1.

violation effect X

(1-2)dependency effect  

(1-3)complexity effect

all three

 25

1.

2.
3.

4.

matrix embedded

-1

-.5

0

.5

1



Just to clarify, the DD score is part of the 
calculation of the three effects.
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Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

Structure Dependency

non-island

non-island

island

island

short

short

long

long

The DD scores earlier were shortcuts to directly calculate the violation effect.

But if we want, we can calculate all three effects (structure, dependency, and 
violation). The two are equivalent, they just reveal different bits of 
information.

(1-4) = (1-2) + (1-3) + violation
(1-2) (1-2)
(2-4) = (1-2) + (1-3) + violation
(1-3) = (1-2) + (1-3)

The three effects:

(2-4) - (1-3) =              violationDD score:



2x2 designs can control potential confounds 
(as long as they don’t interact with the factors)

 27

Who __ thinks that Jack stole the necklace?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the necklace?3.

2.

1.

What do you wonder whether Jack stole __?4. *

Structure Dependency

non-island

non-island

island

island

short

short

long

long

Let’s say you are looking at this design, and you notice that the wh-word 
varies by condition. Should you be worried that this is a confound?

The answer is that it depends on how the variability is distributed around the 
DD subtraction. If the variability subtracts out, then everything is fine. If it 
doesn’t, then this is a confound.

This is the hidden power of 2x2 designs. Although they can only quantify 3 
effects (here length, structure, and violation), they can control for an 
unlimited number of other effects as long as those effects don’t 
interact with any of the factors. By control, I mean they let you subtract 
them out so that they aren’t a confound.



2x2 designs are very powerful

 28

There is a quick way to see whether the potential confound will be subtracted 
out. Basically, if you imagine the conditions as forming a box, the confound will 
subtract out if it is distributed as if it is on the same side of the box.

1.

2.
3.

4.

matrix embedded

-1

-.5

0

.5

1

(2-4)  
- (1-3)

no confound

1.

2.
3.

4.

matrix embedded

-1

-.5

0

.5

1

(2-4)  
- (1-3)

no confound

1.

2.
3.

4.

matrix embedded

-1

-.5

0

.5

1

(2-4)  
- (1-3)

2x the difference

1.

2.
3.

4.

matrix embedded

-1

-.5

0

.5

1

(2-4)  
- (1-3)

2x the difference

If it is distributed on opposite corners, it won’t subtract out, it will add or 
subtract to the appearance of the violation effect. 



2x2 should be your “go to” design

 29

If pairwise comparisons don’t work for your design, then most likely a 2x2 
design will work. 

The only reason to move up to a larger design (2x3, 2x2x2, etc) is theoretical: 
if you are working with an effect that has several levels (e.g. 2x3), if you are 
working with two violation effects at once (e.g., 2x2x2, which is really just two 
2x2 designs put together, one for each effect), or you need to quantify more 
than two factors, then you will need to move up. But most of the time we only 
work on one effect at a time, and most effects are either present/absent (not 
multi-leveled). So 2x2 designs are very likely to work with most syntactic 
effects.

Exercise 1: Creating 2x2 designs for island effects 

The file exercise.1.xlsx is setup for you to create a 2x2 design for each of four 
different island effects (so, 4 different 2x2 designs). Your job is to create one 
example sentence for each condition in the designs (16 total sentences). 

Be sure that any potential confounds are distributed such that they will be 
subtracted out.
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condition 1 condition 2 condition 1 condition 2

Repeated 
Measures:

If each participants sees every condition, we call it repeated 
measures. It is also called a within-subjects design.

Independent 
Measures:

If each participants sees only one condition, we call it 
independent measures. It is also called a between-subjects 
design.

Repeated Measures Independent Measures
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Requires fewer participants Requires more participants

Individual differences between 
participants is not a confound

Individual differences between 
participants is a possible confound

Increased statistical power Decreased statistical power

Interaction of two conditions is a 
potential confound

Interaction of two conditions is 
impossible

Repeated Measures Independent Measures
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Instruction items:

Practice items:

Experimental items:

Filler items:

After you have designed your conditions, the next step is to actually make the 
items that will go in your experiment. The are four types of items that you will 
need to construct:

These are the items that appear in your instructions. 
The goal there is to illustrate the task, and if 
necessary, anchor the response scale.

These are items that occur at the beginning of the 
experiment. They help to familiarize the participant 
with the task. They are typically not analyzed in any 
way. They can be marked as separate (announced) 
or just part of the experiment (unannounced).

These are your treatment and control conditions.

These are items that you add to the experiment for 
various reasons: filling out the scale, hiding the 
experiment’s purpose, and balancing types of items.
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The number and type of instruction items depends on your task. 

If the task is a scale task with an odd number of points (e.g, 7-point scale), I 
recommend three instruction items: one at the bottom of the scale, one at the 
top, and one in middle. Here are three that I use. They were pre-tested in my 
massive LI replication study:

The was insulted waitress frequently. 

Tanya danced with as handsome a boy as her father.

This is a pen.

LI-Mode LI-Mean

1

4

7

1

4

7

If the scale has an even number of points, you would probably just use two: 
the bottom and top of the scale.

If the task is yes/no, you might use three: a clear yes, a clear no, and one in 
between.

If the task is forced-choice, you might use 3 pairs: a pair with a large 
difference, a pair with a medium difference, and one with a small difference.
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Practice items give participants a chance to work out any bugs before they 
respond to items that you actually care about (the experimental items).

For scale tasks, practice items give participants a chance to see the full range 
of variability in acceptability, so that they can use the scale appropriately. So in 
scale tasks, it is important to have practice items that span the range of 
acceptability. Here are 9 that I have pre-tested in the LI study. One for each 
point on a 7-point scale, plus one more for each endpoint.

She was the winner.
Promise to wash, Neal did the car.
The brother and sister that were playing all the time 
had to be sent to bed

LI-Mode LI-Mean

7
1
4

7.00
1.31
3.91

The children were cared for by the adults and the teenagers
Ben is hopeful for everyone you do to attend.
All the men seem to have all eaten supper
They consider a teacher of Chris geeky.
It seems to me that Robert can’t be trusted.
There might mice seem to be in the cupboard.

6
2
5

6.08
2.00
4.92

3
7
1

3.09
6.92
1.25
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For non-scale tasks, the rationale behind the practice items might be different.

For yes/no tasks, you may want to give a mix of clear yes’s, clear no’s, and 
intermediate sentences, so that participants can sharpen their own internal 
boundary.

For forced-choice tasks, you may want to include a mix of large differences, 
small differences, and medium differences, so that participants can practice 
identifying each size of difference.

Announced practice is when you clearly indicate in the experiment that the 
items are practice items. This signals to the participants that it is ok to make  
mistakes. Announced practice is typical in psycholinguistic experiments, 
because it gives participants a chance to ask questions of the experimenter. 

Unannounced practice is when the practice items simply appear as part of the 
main experiment. This is appropriate if the task is relatively intuitive, such that 
participants won’t have questions. This is what I do with all of my judgment 
studies.

I typically present the (unannounced) practice items in the same order for all 
participants. You could also counterbalance the order (more on this later).
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Here is a starting set of experimental items for the whether island experiment 
we started to construct in the previous section. Let’s use these to see the 
issues that arise in creating experimental items.

Who __ thinks that Jack stole the car?1.

non-island shortCondition 1:

Who __ thinks that Amy chased the bus?2.

Who __ thinks that Dale sold the TV?3.

Who __ thinks that Stacey wrote the letter?4.

What do you think that Jack stole __?1.

non-island longCondition 2:

What do you think that Amy chased __?2.

What do you think that Dale sold __?3.

What do you think that Stacey wrote __?4.

Who __ wonders whether Jack stole the car?1.

island shortCondition 3:

Who __ wonders whether Amy chased the bus?2.

Who __ wonders whether Dale sold the TV?3.

Who __ wonders whether Stacey wrote the letter?4.

What do you wonder whether Jack stole __?1.

island longCondition 4:

What do you wonder whether Amy chased __?2.

What do you wonder whether Dale sold __?3.

What do you wonder whether Stacey wrote __?4.
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The first thing to note is that the items are created in lexically matched sets. 
The idea here is that the only thing you want varying between conditions is the 
syntactic manipulation. So, to the extent possible, you use the same lexical 
items in all 4 conditions.

This helps minimize confounds in the experiment. The only lexical confound left 
is if the syntactic manipulation interacts with the lexical items.

Who __ thinks that Jack stole the car?1.

non-island shortCondition 1:

Who __ thinks that Amy chased the bus?2.

Who __ thinks that Dale sold the TV?3.

Who __ thinks that Stacey wrote the letter?4.

What do you think that Jack stole __?1.

non-island longCondition 2:

What do you think that Amy chased __?2.

What do you think that Dale sold __?3.

What do you think that Stacey wrote __?4.

Who __ wonders whether Jack stole the car?1.

island shortCondition 3:

Who __ wonders whether Amy chased the bus?2.

Who __ wonders whether Dale sold the TV?3.

Who __ wonders whether Stacey wrote the letter?4.

What do you wonder whether Jack stole __?1.

island longCondition 4:

What do you wonder whether Amy chased __?2.

What do you wonder whether Dale sold __?3.

What do you wonder whether Stacey wrote __?4.
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The second thing to note is that the variability in the items is tightly controlled. 
In this case, I primarily varied content items, keeping functional items the 
same. There is a tension between variability and control. I tend to err on the 
side of control so that there are fewer chances for confounds.

However, variability is also important. When items vary, you can begin to see 
how well the effect generalizes across lexical items.

Who __ thinks that Jack stole the car?1.

non-island shortCondition 1:

Who __ thinks that Amy chased the bus?2.

Who __ thinks that Dale sold the TV?3.

Who __ thinks that Stacey wrote the letter?4.

What do you think that Jack stole __?1.

non-island longCondition 2:

What do you think that Amy chased __?2.

What do you think that Dale sold __?3.

What do you think that Stacey wrote __?4.

Who __ wonders whether Jack stole the car?1.

island shortCondition 3:

Who __ wonders whether Amy chased the bus?2.

Who __ wonders whether Dale sold the TV?3.

Who __ wonders whether Stacey wrote the letter?4.

What do you wonder whether Jack stole __?1.

island longCondition 4:

What do you wonder whether Amy chased __?2.

What do you wonder whether Dale sold __?3.

What do you wonder whether Stacey wrote __?4.
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There is no set principle for how much variability you need. It will depend on 
the number of viable lexical items for the constructions you are testing, the 
likelihood that lexical items are driving your effect, and the potential confounds 
that could be introduced by lexical items.

What I can tell you is my approach to this:

I try to make every item in a single condition the same length. This means 
there are no extra PPs or clauses between items. Longer sentences often 
lead to lower ratings, so length is a potential confound.

1. 

It is often the case that some of the lexical items cannot vary because of 
the nature of the conditions. For example, in whether-islands you will 
always have whether in the embedded clause.

2. 

I try to be consistent about the use and position of pronouns versus nouns. 
The reason for this is that pronouns and nouns are processed differently; in 
fact, different pronouns are processed differently.

3. 

Everything else is a potential point of variation, as long as the lexical items 
have the relevant properties (e.g., subcategorization frames).

4. 
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In repeated measures designs (each participant sees every condition), lexical 
matching can be a problem. You don’t want one participant to see the same 
lexical material in each condition, because then they might overlook the 
syntactic manipulation:

This leads to a straightforward relationship between (i) the number of 
conditions, (ii) the number of judgments per condition each participant will 
give, and (iii) the number of items that you need to make per condition.

Who __ thinks that Jack stole the car?

What do you think that Jack stole __?

Who __ wonders whether Jack stole the car?

What do you wonder whether Jack stole __?

Who __ thinks that Jack stole the car?

What do you think that Amy chased __?

Who __ wonders whether Dale sold the TV?

What do you wonder whether Stacey wrote __?
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If C is the number of conditions in your experiment, and O is the number of 
judgments (observations) each participant will give per condition, and I is the 
number of items per condition that you need to construct, then I = C x O.

Here I’ve created 4 items per condition, so it must be the case that I only want 
1 judgment per participant per condition. If I wanted 2, I’d need 8 items…

Who __ thinks that Jack stole the car?1.

non-island shortCondition 1:

Who __ thinks that Amy chased the bus?2.

Who __ thinks that Dale sold the TV?3.

Who __ thinks that Stacey wrote the letter?4.

What do you think that Jack stole __?1.

non-island longCondition 2:

What do you think that Amy chased __?2.

What do you think that Dale sold __?3.

What do you think that Stacey wrote __?4.

Who __ wonders whether Jack stole the car?1.

island shortCondition 3:

Who __ wonders whether Amy chased the bus?2.

Who __ wonders whether Dale sold the TV?3.

Who __ wonders whether Stacey wrote the letter?4.

What do you wonder whether Jack stole __?1.

island longCondition 4:

What do you wonder whether Amy chased __?2.

What do you wonder whether Dale sold __?3.

What do you wonder whether Stacey wrote __?4.
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Filler items are not strictly necessary. But there are three reasons to add filler 
items to your experiment. If you are worried about any of these issues, then 
you need fillers items. (As a practical matter, most reviewers expect filler 
items, so it is easier to include them if you can.)

Fill out the 
response scale:

Participants tend to keep track of how often they use each 
response option. If some options aren’t being used, they 
may try to use them even if they aren’t appropriate. Well-
designed fillers can make sure that every response option 
is used an equal number of times.

Balancing other 
properties:

Some properties of your experimental items might be 
particularly salient, especially if you are studying a 
particular construction (wh-movement, ellipsis, etc). 
Fillers allow you to include other constructions, so that 
participants are less likely to be impacted by the salience 
of those features.

Hiding your 
intent:

Relatedly, some experimenters worry that participants 
might respond differently if they know the purpose of the 
experiment. Fillers can help disguise that purpose, by 
hiding the experimental items among other items.
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There is no easy formula for calculating the number of filler items that you 
need. The answer is that you need as many as you need to achieve your goals.

What I can tell you is that there are “rules of thumb” in the field that reviewers 
often look for. These can be violated if the science requires it, but in general, if 
you can follow these rules, it will make your reviewing experience easier.

The ideal ratio of filler items to experimental items is 2:1 or higher. That 
means that 2/3 of the items that a participant sees are filler items, and 
1/3 are experimental items.

1.

The minimum ratio is 1:1. This means that half of the items that a 
participant sees are filler items.

2.

Experimental items from a one experiment can serve as fillers for the 
experimental items from another experiment. So you can kill multiple birds 
with one stone. But the items need to be sufficiently distinct, and they still 
need to satisfy general filler properties (balancing responses, etc).

3.
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Fillers:

With that announcement were many citizens denied the 
opportunity to protest.
There is likely a river to run down the mountain.
Richard may have been hiding, but Blake may have done so 
too.

LI-Mode LI-Mean
1
1
2

1.17

2.17
1.17

The ball perfectly rolled down the hill.
Lloyd Weber musicals are easy to condemn without even 
watching.
There are firemen injured.
Someone better sing the national anthem.
Laura is more excited than nervous.
I hate eating sushi.

3

5
5

2.00
3.08

3.08

6
6
7

4.15
4.17

5.00

Mike prefers tennis because Jon baseball.
Jenny cleaned her sister the table.
There had all hung over the fireplace the portraits by Picasso.
Lilly will dance who the king chooses.
The specimen thawed to study it more closely.

2

3

4
4

7

4.93

6.00
6.00
6.92
6.92

Here is a set of filler items that I have constructed for an 
experiment with 8 experimental items (2 each of 4 conditions).
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The construction of experimental items is primarily about controlling for 
grammar confounds and other cognitive confounds.

Acceptability +Grammar +
memory parsing

world thought Noise

Task Effects

The construction of instruction items, practice items, and filler items is 
primarily about controlling for task effects.

experimental items
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The file exercise.2.xlsx contains the 2x2 designs for the four island effects 
from exercise 1. Your job is to create four items for each condition (a total of 
64 sentences). Be sure to create variability where you can, while still keeping 
the items tightly controlled.

Exercise 2: 2x2 item practice

The file anchor.practice.instruction.items.xlsx includes the instruction, practice, 
and filler items that we discussed here. There is nothing you need to do. These 
just exist for you to use in your future experiments if you want.

Anchor, practice, filler items (not an exercise)
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The construction of experimental items is primarily about controlling for 
grammar confounds and other cognitive confounds.

Acceptability +Grammar +
memory parsing

world thought Noise

Task Effects

The construction of instruction items, practice items, and filler items is 
primarily about controlling for task effects.

The arrangement of items into an actual experiment is also primarily about 
controlling for task effects.

experimental items



Assign meaningful codes to your items

 50

Before we start to manipulate our target items, let’s talk about item codes.

Meaningful codes that you assign to each of your items. 
These will help you quickly identify the properties of each 
item, and will play an important role in later data analysis. 

item codes:

Item codes should contain all of the information about an item, such as the 
name of its condition (if you are naming your conditions), the levels of its 
factors (if you have a factorial design), and the lexically-matched item-set (or 
lexicalization-set) number that it is. Here is how I like to create item codes:

Who __ thinks that Jack stole the car?

non-island shortCondition 1:

Who __ thinks that Amy chased the bus?

Who __ thinks that Dale sold the TV?

Who __ thinks that Stacey wrote the letter?

subdesign.factor1.factor2.item-set-number

wh.non.sh.01

wh.non.sh.02

wh.non.sh.03

wh.non.sh.04

wh.non.sh.01

whether island

short

non-island

set 1
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Who __ thinks that Jack stole the car?

Who __ thinks that Amy chased the bus?

Who __ thinks that Dale sold the TV?

Who __ thinks that Stacey wrote the letter?

wh.non.sh.01

wh.non.sh.02

wh.non.sh.03

wh.non.sh.04

What do you think that Jack stole __?

What do you think that Amy chased __?

What do you think that Dale sold __?

What do you think that Stacey wrote __?

wh.non.lg.01

wh.non.lg.02

wh.non.lg.03

wh.non.lg.04

Who __ wonders whether Jack stole the car?

Who __ wonders whether Amy chased the bus?

Who __ wonders whether Dale sold the TV?

Who __ wonders whether Stacey wrote the letter?

What do you wonder whether Jack stole __?

What do you wonder whether Amy chased __?

What do you wonder whether Dale sold __?

What do you wonder whether Stacey wrote __?

wh.isl.lg.01

wh.isl.lg.02

wh.isl.lg.03

wh.isl.lg.04

wh.isl.sh.01

wh.isl.sh.02

wh.isl.sh.03

wh.isl.sh.04

Note that each item code 
is unique to that item. So 
they are unique identifiers.

However, each code 
captures all of the 
relationships among the 
items.

The global design is 
captured in the first part, 
the factors in the middle 
parts, and the lexical 
matching in the final part.

Using a separator like “.” 
makes it easy to pull this 
information apart in 
languages like R.
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A list is a set of items that will be seen by a single participant. It is 
not yet ordered for presentation.

List:

Who __ thinks that Jack stole the car?

Who __ thinks that Amy chased the bus?

Who __ thinks that Dale sold the TV?

Who __ thinks that Stacey wrote the letter?

wh.non.sh.01

wh.non.sh.02

wh.non.sh.03

wh.non.sh.04

What do you think that Jack stole __?

What do you think that Amy chased __?

What do you think that Dale sold __?

What do you think that Stacey wrote__?

wh.non.lg.01

wh.non.lg.02

wh.non.lg.03

wh.non.lg.04

Who __ wonders whether Jack stole the car?

Who __ wonders whether Amy chased the bus?

Who __ wonders whether Dale sold the TV?

Who __ wonders whether Stacey wrote the letter?

What do you wonder whether Jack stole __?

What do you wonder whether Amy chased __?

What do you wonder whether Dale sold __?

What do you wonder whether Stacey wrote __?

wh.isl.lg.01

wh.isl.lg.02

wh.isl.lg.03

wh.isl.lg.04

wh.isl.sh.01

wh.isl.sh.02

wh.isl.sh.03

wh.isl.sh.04

Let’s assume that these are our 4 conditions. We’ve made 4 items per condition. 
We want each participant to see all 4 conditions, and 1 item per condition.

We don’t want participants to see the same lexical material (because then they 
might not notice the differences). How many lists can we make at the same time?
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The answer is that we can create 4 
lists from this design.

List 1 List 2 List 3 List 4

wh.non.sh.01 wh.non.sh.02 wh.non.sh.03 wh.non.sh.04

wh.non.lg.02 wh.non.lg.03 wh.non.lg.04 wh.non.lg.01

wh.isl.sh.03 wh.isl.sh.04 wh.isl.sh.01 wh.isl.sh.02

wh.isl.lg.04 wh.isl.lg.01 wh.isl.lg.02 wh.isl.lg.03

We want each list to have all 4 
conditions, but to have a different 
lexical item for each condition.

Who __ thinks that Jack stole the car? Who __ thinks that Amy chased the bus?

Who __ thinks that Dale sold the TV? Who __ thinks that Stacey wrote the letter?

wh.non.sh.01 wh.non.sh.02

wh.non.sh.03 wh.non.sh.04

What do you think that Jack stole __?

What do you think that Amy chased __? What do you think that Dale sold __?

What do you think that Stacey wrote __? wh.non.lg.01

wh.non.lg.02 wh.non.lg.03

wh.non.lg.04

Who __ wonders whether Jack stole the car? Who __ wonders whether Amy chased the bus?

Who __ wonders whether Dale sold the TV? Who __ wonders whether Stacey wrote the letter?

What do you wonder whether Jack stole __?

What do you wonder whether Amy chased __? What do you wonder whether Dale sold __?

What do you wonder whether Stacey wrote __? wh.isl.lg.01

wh.isl.lg.02 wh.isl.lg.03

wh.isl.lg.04

wh.isl.sh.01 wh.isl.sh.02

wh.isl.sh.03 wh.isl.sh.04

List 1 List 2

List 3 List 4
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This design is often called a Latin 
Square design in experimental fields.

List 1 List 2 List 3 List 4

wh.non.sh.01 wh.non.sh.02 wh.non.sh.03 wh.non.sh.04

wh.non.lg.02 wh.non.lg.03 wh.non.lg.04 wh.non.lg.01

wh.isl.sh.03 wh.isl.sh.04 wh.isl.sh.01 wh.isl.sh.02

wh.isl.lg.04 wh.isl.lg.01 wh.isl.lg.02 wh.isl.lg.03

Latin Squares have been 
mathematical puzzles for centuries. 
Euler studied them using Latin 
characters, hence the name.

A B C D

B C D A

C D A B

D A B C

List 1 List 2 List 3 List 4

wh.non.sh 1 2 3 4

wh.non.lg 2 3 4 1

wh.isl.sh 3 4 1 2

wh.isl.lg 4 1 2 3

Latin Square (4 letters) Latin Square Design (4 conditions)

The number in the cells represent items 
numbers from the lexically-matched sets.
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There are 576 possible solutions to a 
latin square of size 4, but we only need 
one. It is really easy to find a single 
solution to a latin square — simply 
increment the sequence by one step in 
each row, looping the sequence around 
when you get to the end. This will 
always give you a solution.

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

Once you have this solution 
memorized, you can see that it is the 
solution that I used to create the four 
lists for our experiment.

List 1 List 2 List 3 List 4

wh.non.sh.01 wh.non.sh.02 wh.non.sh.03 wh.non.sh.04

wh.non.lg.02 wh.non.lg.03 wh.non.lg.04 wh.non.lg.01

wh.isl.sh.03 wh.isl.sh.04 wh.isl.sh.01 wh.isl.sh.02

wh.isl.lg.04 wh.isl.lg.01 wh.isl.lg.02 wh.isl.lg.03

So all we need now is a quick way to create this latin square pattern for both our 
sentences and the item codes for our sentences.
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You should probably create latin squares by hand for the first few experiments 
that you run, so that you can be sure that you really understand the pattern. 
But once you know the pattern, you should feel free to automate the process. 
Here is some mild automation using excel:

Step 1: list all items in order by condition 
Step 2: add a list number next to each item based on a Latin Square design 
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Step 1: list all items in order by condition 
Step 2: add a list number next to each item based on a Latin Square design 
Step 3: sort by the list number to create four lists 

You should probably create latin squares by hand for the first few experiments 
that you run, so that you can be sure that you really understand the pattern. 
But once you know the pattern, you should feel free to automate the process. 
Here is some mild automation using excel:
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Increasing the number of items per condition that a participant judges will 
increase the sensitivity of your experiment. (It will lead to less noise per 
participant.)

The first thing to remember is our equation: then I = C x O. If you want 2 
observations, and have 4 conditions, you will need 8 items per condition:

Condition 1 Condition 2 Condition 3 Condition 4
item 1 item 1 item 1 item 1
item 2 item 2 item 2 item 2
item 3 item 3 item 3 item 3
item 4 item 4 item 4 item 4
item 5 item 5 item 5 item 5
item 6 item 6 item 6 item 6
item 7 item 7 item 7 item 7
item 8 item 8 item 8 item 8
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If you follow our Latin Square procedure, you will end up with 8 lists:

List 1 List 2 List 3 List 4 List 5 List 6 List 7 List 8
condition 1 1 2 3 4 5 6 7 8
condition 2 2 3 4 5 6 7 8 1
condition 3 3 4 5 6 7 8 1 2
condition 4 4 5 6 7 8 1 2 3

List 1 List 2 List 3 List 4
condition 1 1 2 3 4
condition 2 2 3 4 5
condition 3 3 4 5 6
condition 4 4 5 6 7
condition 1 5 6 7 8
condition 2 6 7 8 1
condition 3 7 8 1 2
condition 4 8 1 2 3

All you have to do is 
cut lists 5 -8, and 
paste them below 
lists 1-4.

The result is four lists 
with two items per 
condition, and no 
lexical overlap.
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To get two items per condition you simply use each list number twice:
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And then when you sort you will have 4 lists, each with two items per condition.
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For basic acceptability judgment experiments I generally recommend that you 
present 2 items per condition per participant. So for a 2x2 design, that means 
you need 8 items per condition.

I think that 8 items per condition is also sufficient to make (non-statistical) 
claims about the generalizability of the result to multiple items. So this is a 
nice starting point for most designs.

Of course, if you have reason to believe that participants will make errors with 
the items, you should present more than 2 items per condition. Similarly, if 
you need to demonstrate that the result generalizes to more than 8 items, by 
all means, use more than 8 items. These are just good starting points for basic 
acceptability judgment experiments.

The file exercise.3.xlsx contains four worksheets for you to create: (i) a Latin 
Square by hand, (ii) a Latin Square that is mildly automated, (iii) a Latin 
Square with two items per condition by hand, and (iv) a Latin Square with two 
items per condition that is mildly automated.

Exercise 3
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The next step is to combine the fillers with the experimental items to create 
unordered lists.

I like to do a little formatting here. The Latin Square procedure gives you 4 
lists of experimental items. I put the item codes to the left of each list, and 
place a blank column to the left of the item codes. We’ll use that column when 
we order the lists. I also number each list, above the item codes.



Unordered lists
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The next step is to add the fillers to these lists.

You have three options when it comes to adding fillers:

Identical fillers 
items for each list:

Different items 
(but same types) 
for each list:

Use a second 
experiment as 
the filler items:

This is the most controlled option. Every participant 
sees the same filler items, so the fillers don’t 
introduce any variability into the experiment.

This basically treats the fillers like experimental 
items. I don’t know why you would do this, unless 
you wanted to analyze the fillers. But I’ve seen this.

This saves time (and perhaps money). However, it 
means that your “fillers” are introducing variability 
between participants. You also have to be careful 
about which experiments to combine. You don’t 
want the items from the two experiments 
influencing each other (so they should be relatively 
distinct phenomena.)



Unordered lists
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In the example materials, I am going with option 1: identical filler items for 
each list. I think this should be the default option. You can use the other 
options if you have reason to.

Notice that I’ve given item codes to the fillers. This allows us to look at their 
ratings later.

And now you have unordered lists.
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The next step is to order the lists for actual presentation to participants.

The goal of this step is to make the order appear random to the participant, 
while still exerting control over the order to eliminate confounds.

We call an order that appears random, but isn’t, pseudorandom. So, we want 
to pseudorandomize the lists.

What are some things that we want to control for in our pseudorandomization? 
(i.e., what are some of the constraints on the order?) 

We don’t want related experimental conditions to appear next to each other.1. 

We don’t want the experimental items to cluster together separately from 
the fillers.

2. 

… there may be others depending on your experiment …

Notice that the reason that we can’t use a random order is that random means 
any possible order. A random order could violate our constraints.
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You can use the excel function =rand() to generate a random number 
between 0 and 1 next to each item in a list.

You can then use the excel sort command to reorder the list based on the 
random number. 

This will give you a random order. You can then look for yourself to see if it 
satisfies your constraints. If it does, you are finished. If it doesn’t, you can 
simply use the sort command again to generate a new random order. The 
rand() function updates after the sort, so you don’t need to run it again.
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At this stage, you have one pseudorandom order per list.

But the fact of the matter is that every order has at least one confound in it — 
the order itself. The order itself is going to have some effect, and we can’t 
eliminate it.

When we can’t eliminate a confound, one strategy is to counterbalance it. 
The term comes from weights on a scale — if the order is causing one effect, 
we can try to neutralize that effect by creating the opposite effect.

So, we can counterbalance the order of presentation by doing some simple 
manipulations:

We can create the exact reverse of the order. This new reversed-order will 
counterbalance the effects of being first or last in the order (practice, 
fatigue, etc.)

1. 

We can split the original order in half, and put the second half first and the 
first half second. This will counterbalance the effects of being in the middle 
of the order (because the middle items will now be either at the beginning 
or end of the order.

2. 

We can also reverse the split order to counterbalance for the new first/last 
endpoints. (Or split the reverse order, the two are equivalent.)

3. 
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Original Reversed Split Split-Reversed

item 1 item 8 item 5 item 4

item 2 item 7 item 6 item 3

item 3 item 6 item 7 item 2
item 4 item 5 item 8 item 1

item 5 item 4 item 1 item 8

item 6 item 3 item 2 item 7

item 7 item 2 item 3 item 6
item 8 item 1 item 4 item 5

This procedure gives you 4 orders per list. So if you have 4 lists to begin with, 
you will have 16 orders. This is sufficient for most experiments.

(Advanced thought: You can, in principle, get away with one order per list if 
you don’t think that the different items will behave differently in different 
positions (an item x position interaction). You can create these 4 orders using 
conditions instead of items, and then apply one order to each of your four 
lists.)
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The final step is to add the practice items to the beginning of each list. They 
will be in the same order for each participant, so this is just copy and paste.

Now you have complete lists! (NB: I am going back to one order per list for 
simplicity. But remember that the safest option is (at least) 4 orders per list.)



Make a set of item code keys
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At this point, you should also make a file with just the item codes in the 
correct orders. We will use this when we analyze the data later.

The code I am going to give you requires that 
there be a number at the top of each list, and 
that there be no spaces between the lists.

In principle, you could write a script that 
doesn’t care about these things. That is going 
to be up to you, and R.

The code also looks for this to be a separate 
CSV file. I’ve given you this separate file 
(keys.csv) in the packet of files that you’ve 
downloaded. I put this in the big excel 
workbook just for convenience.
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The file exercise.4.xlsx contains four worksheets that walk through the steps of 
ordering lists.

Exercise 4:

The first sheet is for pseudorandomizing the original lists. 

The second sheet is for creating four orders per list based on the split/reverse 
procedure.

The third sheet is for adding practice items.

The fourth sheet is for creating item keys for later use.
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Participants indicate whether a sentence is grammatical/
ungrammatical (possible/impossible, acceptable/
unacceptable). This it technically a two-alternative forced-
choice task (2AFC), but I use that label for the next task.

Yes-No:

Participants judge two (or more) sentences simultaneously, 
and indicate which is better (or worse). When there are two 
sentences, it is a two-alternative forced-choice (2AFC).

Forced-Choice:

Participants judge each sentence individually along a 
numerical scale. The scale generally has an odd number of 
points (so there is a middle point), but in theory it could be 
even. 

Likert Scale:

Participants judge each sentence individually, but judge it 
relative to a reference sentence. The ratings are numerical. 

Magnitude 
Estimation:

There are four basic tasks in experimental syntax. I will briefly talk about all of 
them, but for most experiments, I believe the best choice is Likert Scale.



The Likert Scale Task
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Participants judge each sentence individually along a 
numerical scale. The scale generally has an odd number of 
points (so there is a middle point), but in theory it could be 
even. 

Likert Scale:

Who thinks that John bought a car?

What do you think that John bought?

Who wonders whether John bought a car?

What do you wonder whether John bought?

1.

2.

3.

4.

1 2 3 4 5 6 7
least acceptable most acceptable

For Likert Scale tasks you have to choose the number of scale points. The trick 
is to choose a number that is high enough for participants to report as many 
differences as they want, but not so high that they won’t use all of them. I like 
to use 7. It is also best to use an odd number so there is a middle point.

You also need to label the two ends of the scale. I like to use least/most 
acceptable. I also like to make the low numbers the low ratings. The reverse 
seems confusing to some participants.



The Likert Scale Task
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What is the difference between an odd number and an even number of 
points?

I think this question is most salient if you assume (i) a binary grammar (two 
types of strings: grammatical and ungrammatical), and (ii) a linking hypothesis 
between acceptability and grammaticality whereby the location on the 
continuum of acceptability indicates grammaticality (higher is grammatical, 
lower is ungrammatical).

Both of these assumptions are open areas of research — there are plenty of 
non-binary approaches to grammar; and there are well-known examples of 
misalignment between acceptability and grammaticality:

*The reporter the senator the president insulted contacted filed the story.

More people have been to Russian than I have.

Unacceptable, but probably grammatical:

Initially acceptable, but ungrammatical:



The Likert Scale Task
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What is the difference between an odd number and an even number of 
points?

An odd number of points gives participants the option of saying that they don’t 
know whether this should fall on the acceptable or unacceptable side of the 
spectrum.

Who thinks that John bought a car?
1 2 3 4 5 6 7

least acceptable most acceptable

Who thinks that John bought a car?
1 2 3 4 5 6

least acceptable most acceptable

An even number of points turns this into a type of binary forced-choice: 
participants have to choose a side of the scale. I like to keep the binary aspect 
out of the Likert scale because the nature of the relationship between 
acceptability and grammaticality is such an open question. 



The Likert Scale Task
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Why 7 points? Why not 5 or 9?

Bard et al. 1996 demonstrated that 5 was not enough. Participants can 
distinguish more than 5 levels of acceptability.

To my knowledge, nobody has demonstrated that 7 is not enough, or that 
some higher number is preferable. This is a gap in our methodological 
knowledge.

But a bit later in this lecture, I will show you that completely unconstrained 
scales do not increase statistical power over 7 point scales… suggesting that 
there is a finite number that is ideal.

And, I can tell you that I have never had a participant tell me that they felt 
constrained by a 7 point scale. I only ran in-person studies from 2004 to 2010. 
Since 2010, nearly all of my experiments have been online, so there is little 
opportunity for them to tell me (unless they email me).
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One of the primary benefits of LS tasks is that they provide a clear mechanism 
for assessing the sizes of differences between conditions

s2 s3 s4 s5s1

participant 1:

1 2 3 4 5 6 7

There will be some variability in the cases where a sentence falls on the 
boundary between two ratings (the way that s3 falls on the 4/5 boundary), but 
in general, the numerical ratings of LS tasks lend themselves to the types of 
analyses that we want for factorial designs.

However, this rests on several assumptions about how participants use the 
scales. Can you think of what those assumptions are? We will go through them 
in the “drawbacks” slides for LS!
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Even though each sentence is rated in isolation in an LS task, because those 
ratings are made relative to a scale, it is possible to make comparisons 
between any and all of the sentences in the experiment.

s2 s3 s4 s5s1

participant 1:

1 2 3 4 5 6 7

This means that you do not need to know which comparisons you are going to 
make before you run the experiment. Although in practice, there is no point in 
running an experiment if you don’t know what you are looking for!
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The responses in LS tasks tell you where along the scale a given sentence is. 
This means that you can interpret the location on the scale if you want to.

s2 s3 s4 s5s1

participant 1:

1 2 3 4 5 6 7

For example, if you assume a binary theory of grammaticality, you could 
interpret the location of the rating as indicative of the grammaticality of the 
sentence: 

grammaticality:

Of course, this rests on a number of assumptions about how the participant 
uses the scale, how grammars work, and how acceptability maps to 
grammaticality (a linking hypothesis)! So it isn’t an argument, but rather an 
assumption, or better yet, a research question.
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Different participants might choose to use a scale in different 
ways. 

s2 s3 s4 s5s1

participant 1:

1 2 3 4 5 6 7

Scale Bias:

participant 2:

3 4 5

participant 3:

1 2 3

participant 4:

5 6 7

We can eliminate basic scale bias with a z-score transformation, which we will 
talk about a bit later.
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s2s1

participant 1:

1 2 3 4 5 6 7

The obvious solution to this is to increase the number of responses in the 
scale.

The LS task gives participants a finite number of response options. This means 
that there may be certain differences between conditions that they cannot 
report:

The two sentences above would both be rated a 3, even though they do have a 
small difference between them.

But this runs the risk of introducing too many response options. If the scale 
defines units that are smaller than the units that humans can use, it could 
introduce noise in the measurements (or stress in the participants).
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There is no easy solution to this (although one could imagine building a model 
to try to estimate these non-linearities for each participant). 

One of the assumptions in the LS task is that each of the response categories 
is exactly the same size (that they define the same interval). But this need not 
be the case:

s2 s3 s4 s5s1

participant 1:

1 2 3 4 5 6 7

participant 2:

1 2 3 4 5 6 7

participant 3:

1 2 3 4 5 6 7
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Participants judge each sentence individually, but judge it 
relative to a reference sentence. The ratings are numerical. 

Magnitude 
Estimation:

Who said my brother was kept tabs on by the FBI?

What do you wonder whether John bought?

The first step is to define a reference stimulus. Usually this is chosen to be in 
approximately the middle of the range of acceptability. 

The reference stimulus is called the standard. It is assigned a number that 
represents its acceptability rating. This number is called the modulus. Usually 
the modulus is a nice round number like 100.

100

Participants are then asked to rate each sentence in the experiment relative to 
the standard and modulus. The idea is that if the sentence is twice as 
acceptable, they would rate the sentence as twice the modulus (e.g., 200). If it 
is half as acceptable, they would rate it as half the modulus (e.g., 50):

???
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ME was introduced into psychophysics by Stanley Smith Stevens in order to 
overcome two deficiencies in the Likert Scale task. It was introduced to syntax 
by Bard et al. (1996) for exactly the same reason.

The LS task uses a finite number of responses. In contrast, ME is usually 
defined over the positive number line, which is countably infinite. ME 
sidesteps the problem of defining too many responses by tying the 
response to a multiple of the standard. This could increase precision.

1.

There is no guarantee that the intervals in LS tasks are stable (we called 
these non-linearities earlier). ME eliminates this problem by using the 
standard as the perceptual unit (a perceptual “inch”). Although this might 
differ from participant to participant, the responses within participant 
should be stable.

2.

s2 s3 s4 s5s1

LS: 1 2 3 4 5 6 7

ME:
1x 2x 3x0
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ME makes two assumptions about the cognitive abilities of participants (see 
Narens 1996 and Luce 2002):

Participants must have the ability to make ratio judgments.1.

The number words (called numerals) that participants use must represent 
the mathematical numbers (called numbers) that the words denote.

2.

Narens (1996) laid out empirical conditions that would test whether these two 
assumptions hold. He defined them in terms of a magnitude production - a 
task in which participants must produce a second stimulus that has the right 
proportion to the first stimulus (e.g., lights).

Commutativity: Magnitude assessments are commutative if the order in 
which successive adjustments (symbolized by ∗ , X is the original stimulus) 
are made is irrelevant, such that p ∗ (q ∗ X) ≈ q ∗ (p ∗ X). Notice that this 
makes no reference to numbers (it is about matching the resulting stimuli), 
so it is only testing the ratio judgment assumption.

1.

Multiplicativity: Magnitude assessments are multiplicative if the result of 
two successive adjustments matches the result of a single adjustment that 
is the numeric equivalent of the product of the two adjustments, such that 
p ∗ (q ∗ X) ≈ r ∗ X, when p ⋅ q = r.

2.



Testing commutativity with ME instead of MP
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Experiment 1

sentence X

sentence Y

sentence Z

150

200

100

p ∗ (q ∗ X) ≈ q ∗ (p ∗ X)commutativity:

(p ∗ X)

(q ∗ X)

…

Experiment 2

sentence Y

…

…

150

q ∗ (p ∗ X)

(p ∗ X)

300sentence J

Experiment 3

sentence Z

…

…

200

p ∗ (q ∗ X)

(q ∗ X)

300sentence J

X

If commutativity holds, then both 
experiment 2 and experiment 3 will 
yield the same sentence when we 
look for the p∗q value.

The only complicated thing here is 
that we need to run separate 
experiments for each participant 
using the results from experiment 1.
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Experiment 1

sentence X

sentence Y

sentence Z

150

200

100

p ∗ (q ∗ X) ≈ q ∗ (p ∗ X)commutativity:

(p ∗ X)

(q ∗ X)

…

Experiment 2

sentence Y

…

…

100

q ∗ (p ∗ X)/p

(p ∗ X)/p

200sentence J

Experiment 3

sentence Z

…

…

100

p ∗ (q ∗ X)/q

(q ∗ X)/q

150sentence J

X

We can simplify the process by 
setting all standards to 100.

This allows us to run all three 
experiments without creating 
dependencies across the experiments.
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The logic of this experiment relies on finding an item that has the correct 
rating in both experiments 2 and 3. To increase the likelihood of finding that 
(should commutativey exist), Sprouse 2011 used 8 experiments instead of 3:

Experiment 1

sentence 1

sentence 2

sentence 3

100

sentence 4

sentence 5

sentence 6

sentence 7

sentence 8

Experiment 2

sentence 2

sentence 1

sentence 3

100

sentence 4

sentence 5

sentence 6

sentence 7

sentence 8

Experiment 8

sentence 8

sentence 1

sentence 2

100

sentence 3

sentence 4

sentence 5

sentence 6

sentence 7

…
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Because of the novelty of this design, and the fact that chance plays such a big 
role, Sprouse 2011 designed a simulation test to see if the number of matches 
suggesting commutativity was greater than or less than what would be 
expected by chance in this design. Basically, a randomization test — which we 
will discuss in more detail when we do stats later in the course.

identity ±9 ±19
match margin

0
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These figures show the number of participants (out of 24) that show evidence 
(above chance) of commutativity. Sprouse 2011 ran two experiments, so there 
are two graphs. The dotted line shows the expected number of participants if 
acceptability judgments had the same level of commutativity as magnitude 
estimation in psychophysics.
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Although there are a number of potential benefits to using ME for 
psychophysics, it is not clear that these benefits extend to using ME for 
acceptability judgments because ME for acceptability does not respect the 
cognitive assumptions of ME (namely, commutativity).

Commutativity tests the ability of subjects to make ratio judgments. Sprouse 
2011’s results suggest that humans cannot make ratio judgments of 
acceptability.

s2 s3 s4 s5s1

LS: 1 2 3 4 5 6 7

ME:
1x 2x 3x0

It seems to me that problem is that ratios require a zero point. Without a zero 
point, it is impossible to state ratios. Therefore ME requires a zero point. 
However, it is not clear at all that acceptability has a zero point. What would it 
even mean for a sentence to have zero acceptability? This lack of meaningful 
zero point likely causes the breakdown of ME for acceptability.
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Participants indicate whether a sentence is grammatical/
ungrammatical (possible/impossible, acceptable/
unacceptable). This could also be called a two-alternative 
forced-choice task, but I reserve that label for the next task.

Yes-No:

What do you wonder whether John bought?

I think that Lisa wrote a book.

Who did you meet the man that married?

Yes No

Yes No

Yes No

Although I like to call this the yes-no task, this isn’t standardized. Part of the 
problem is that you could use any pair of categorical labels that you prefer. 
The other problem is that this is technically an instance of a two-alternative 
forced-choice task (where the choices are categories). 



The Yes-No Task
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Participants indicate whether a sentence is grammatical/
ungrammatical (possible/impossible, acceptable/
unacceptable). This could also be called a two-alternative 
forced-choice task, but I reserve that label for the next task.

Yes-No:

Benefit: If you believe the grammar is binary, then you might also 
believe that acceptability might reflect that. So, asking 
people which category sentences belong to could be helpful.

Drawback: Participants could have different boundary locations. This 
will create noise in the ratings for some sentences.

participant 1:

participant 2:

Drawback: This task has less sensitivity to detect differences between 
sentences that are on the same side of the boundary. This 
can be problematic for larger designs (e.g. 2x2s).



The Forced-Choice Task
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Participants judge two (or more) sentences simultaneously, 
and indicate which is better (or worse). When there are two 
sentences, it is a two-alternative forced-choice (2AFC).

Forced-Choice:

What do you wonder whether John bought?

What do you think that John bought?

You could in principle have as many sentences as you like per group (2AFC, 
3AFC, 4AFC); however, I find it difficult to think of a scenario where this would 
be useful in building a syntactic theory. The fact that one sentence is better 
than the other two in a 3AFC doesn’t tell you anything about the other two 
sentences relative to each other. So in practice, this will just be a task for 
situations when you want to see a difference between two conditions.



FC Benefit
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The primary benefit of the forced-choice task is that it is explicitly designed to 
reveal differences between two conditions. If that is the goal of your 
hypothesis, you can’t get a more perfectly designed task:

What do you wonder whether John bought?

What do you think that John bought?

Notice that the two sentences are the same lexicalization. This means that 
there is no chance that variability in the lexical items is leading to the 
difference that is reported by participants.

This also means that there is less of a chance that differences in meaning are 
driving the difference (only differences in meaning that are tied to the 
structure could be causing the difference). 

Normally, we don’t recommend using the same lexicalization. But in this case, 
the paired presentation means that the difference in structure is going to stand 
out, so we don’t worry about them not noticing it.
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One obvious drawback to the forced-choice task is that you can only compare 
two conditions if they are presented as a pair in the experiment.

What do you wonder whether John bought?

What do you think that John bought?

Who thinks that John bought a car?

Who wonders whether John bought a car?

1.

2.

3.

4.

If you wanted to compare 1 and 2 or 3 and 4, you’d have to add another pair 
containing those sentences to your experiment.

In practice this means that in order to use a forced-choice experiment, you 
have to know ahead of time exactly which comparisons you want to make so 
that you can build them into the design of the experiment.



FC Drawback: No location information
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Another drawback of the FC task is that it provides no information about where 
the sentences are on the scale of relative acceptability.

s1 s2

Let’s say that you run an FC experiment, and see that two sentence are 
different. They could still be anywhere on the scale:

s1 s2

s1 s2

Option 1:

Option 2:

Option 3:
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Because the FC task is predicated upon pairs of sentence, the assembly of the 
task is a bit more complicated than the other tasks.

The first complication is that when you are creating your Latin Squares, you 
have to keep the pairs of items together. Basically, in an FC task, each 
“condition” is really a pairing of two sentence types together:

list 1 list 2 list 3 list 4

condition 1 1-1 2-2 3-3 4-4

condition 2 2-2 3-3 4-4 1-1

condition 3 3-3 4-4 1-1 2-2

condition 4 4-4 1-1 2-2 3-3



FC Drawback: More complicated assembly
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The second complication is that you don’t want the two sentence types to 
appear in the same order each time. Half the time you want the better 
sentence on top in the pair, and half the time you want the worse sentence on 
top in the pair. This makes sure that participants can’t take the strategy 
“always choose top” or “always choose bottom” with any success.

So after creating your latin square, you have to go through and make sure that 
half of the pairs are in one order, and the other half are in the other order:

list 1 list 2 list 3 list 4

C1 1-1 2-2 3-3 4-4

C2 2-2 3-3 4-4 1-1

C3 3-3 4-4 1-1 2-2

C4 4-4 1-1 2-2 3-3

Notice that each list/column has two 
red items first, and two green items 
first.

Notice that each row/condition-pair 
has two red items first, and two green 
items first.

This is not easy, and I know of no 
software to automate this.



Comparing Tasks: Qualitative evaluation
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YN is terrific if you want participants to divide sentences into 
two groups. But it is not well suited for other types of 
experiments. The boundary increases noise, and makes the 
task blind to differences that fall on one side of the 
boundary.

Yes-No:

FC is terrific you want to detect a difference between two 
sentences. But it is not well suited for other types of 
experiments. It provides no location information, and can 
only be analyzed in direct (pre-planned) pairs.

Forced-Choice:

LS has the best combination of properties for most 
experiments. It gives effect size information and location 
information, and allows for flexible analyses. Its drawbacks 
are either correctable or mostly theoretical.

Likert Scale:

Participants can’t do ME of acceptability, so it turns into 
something like an LS task. I would not use it.

Magnitude 
Estimation:



Comparing Tasks: Statistical Power
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Statistical power: The probability that a statistical test will favor the 
alternative hypothesis when the alternative hypothesis 
is in fact true.

This definition will make much more sense later in the course when we discuss 
stats. For now, we can think of it this way: statistical power is the probability 
of detecting a difference between conditions when there really is a difference 
between the conditions. It can also be thought of as a measure of sensitivity.

As a probability, statistical power ranges from 0 to 1, where 0 means 
something will never happen, and 1 means it is certain to happen. 

Probabilities can also be converted to percentages if you like that better: 0% 
to 100%. 

Since power is the probability of detecting an effect when one really exists, we 
want it to be as high as possible… 1 or 100% would be ideal, though in 
practice this is difficult to achieve (for reasons that we will discuss when we 
get to stats).

In psychology, a good rule of thumb is that .8 or 80% power is a good level of 
power for a given test.



Comparing Tasks: Statistical Power
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Statistical power is dependent on a number of factors:

The size of the difference to be detected. Larger differences are easier to 
detect, thus increasing power.

So, if you want to compare the statistical power of different tasks, you have to 
either hold some of these factors constant, or vary some of them to see the 
impact of different values.

Sprouse and Almeida 2017 did just that for the four tasks that we’ve been 
discussing.

1. 

The size of the sample of participants. Larger samples provide better 
estimates (with less noise), thus increasing power..

2. 

The inherent noise in the task. Less-noisy tasks lead to higher power.3. 

The rate of false positives that you are willing to tolerate. It is easy to 
have perfect (1 or 100%) power: just call everything significant!

4. 



The phenomena
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Sprouse et al. 2013 tested 150 phenomena that were randomly sampled from 
Linguistic Inquiry between 2001 and 2010. Each phenomenon had two 
conditions: a target condition that was marked unacceptable in the journal 
article, and a control condition that was marked acceptable.

Sprouse and Almeida 2017 chose 47 of those phenomena to use as critical test 
cases for comparing power. We chose the 47 to span the lower half of the 
range of effect sizes. We chose the lower range because that is where the 
action will be!
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These are 
standardized 
effect sizes called 
Cohen’s d. 

By standardizing 
the effect sizes, 
you can compare 
across fields!



The experiments and simulations
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Sprouse and Almeida 2017 collected 144 participants x 4 tasks (=576) for 
each of the 47 phenomena. This allowed us to create re-sampling simulations 
to estimate the statistical power of each task for each phenomenon for sample 
sizes ranging from 5 to 100.

x 1000choose 5 
randomly run a statistical test

x 1000choose 6 
randomly

run a statistical test

x 1000choose 7 
randomly

run a statistical test

. 

. 

.

x 1000choose 100 
randomly

run a statistical test



Comparing Tasks: Statistical Power
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These graphs show an estimate of statistical power at each sample size from 5 
to 100 (x-axis) for each task (columns) for two types of statistical tests (blue is 
null hypothesis testing; red is bayes factors). The vertical lines indicate 80%.

Forced−Choice Likert Scale Magnitude Estimation Yes−No
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These graphs show an estimate of statistical power at each sample size from 5 
to 100 (x-axis) for each group of phenomena (columns) for two types of 
statistical tests (rows) for each task (colored lines)
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What we see is the FC has the most power, which is unsurprising given that it 
is designed to detect differences between conditions. LS and ME are roughly 
the same, with some minor advantages for LS (matching the findings of 
Weskott and Fanselow 2011 for some German phenomena). YN has the lowest 
power (most of the time), which is unsurprising given that it is not designed to 
detect differences between conditions, but rather categorize sentence types.



Comparing LS and ME: ratings and effect sizes
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As a quick aside, to substantiate my belief that participants turn ME tasks into 
LS tasks, we can compare the ratings of the same set of 300 conditions from 
Sprouse et al. 2013 using each task:
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The correlations are ridiculous. Pearson’s r ranges from -1 (perfectly negatively 
correlated) to 1 (perfectly positively correlated). The r’s here are .99 for 
ratings, and 1 for effect sizes.

The ratings slope is .95 and the effect sizes slope is 1, again suggesting a 
really high degree of equivalence between the two tasks. This suggests the 
power loss in the previous slides is likely due to the higher variability in ME 
ratings (because of more response options), as noted by Weskott and Fanselow 
2011. This is evidence that unlimited response scales are not necessarily ideal.



Instructions
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It is fairly common for non-linguists to wonder about the instructions that we 
give participants. I get the sense that in other fields, the instructions can really 
impact the results.

The only systematic study of this that I 
know is reported in Cowart’s 1997 textbook.

He reports that his manipulations of the 
instructions led to no differences in the 
pattern of results that he obtained. All he 
could do was move judgments (of all 
sentences) up or down on the scale.

I’ve never studied this myself, though I’ve also never noticed any artifacts in 
my results that might suggest a problem with the instructions.

I have provided HTML templates for each of these tasks that can be used on 
Amazon Mechanical Turk (we’ll look at them soon). The instructions that I use 
are contained in these templates, so you can take a look at them if you’d like 
some inspiration for instructions for your tasks.



Table of contents
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Conditions

Items

Ordering items for presentation

Judgment Tasks

Recruiting participants

Pre-processing data (if necessary)

Introduction: You are already an experimentalist1.

2.

3.

4.

5.

6.

7.

Plotting8.

Building linear mixed effects models9.

Evaluating linear mixed effects models using Fisher10.

Bayesian statistics and Bayes Factors 12.

Validity and replicability of judgments13.

The source of judgment effects14.

Gradience in judgments15.

Section 1: 
Design

Section 2: 
Analysis

Section 3: 
Application

Neyman-Pearson and controlling error rates11.



Institutional Review Board (IRB) Approval
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In the US, before you recruit human participants, you will need approval from 
your university’s Institutional Review Board (the IRB). This is generally a 
painless process, but it can take a month or more, so you should start planning 
early.

The process varies from institution to institution, so I can’t give you detailed 
instructions. But I do have some general recommendations:

If possible, I would suggest requesting approval for all four possible tasks, 
both online and offline, and for all possible languages you might study in 
one application. I would also request approval to test several thousand 
participants. This will save you time down the road. 

1.

Acceptability judgments generally fall under survey procedures, which 
means that they are exempt (category 2). This means that they are 
exempt from full board review, and instead only require review by the chair 
of the board. This generally means that the review process will be a bit 
faster. (The other levels of review are “expedited”, which also doesn’t 
require full board review, and “full”, which is full board review)

2.

Most IRBs require some sort of training before you can submit a proposal 
for review. So be sure to complete that before you submit your proposal.

3.



Amazon Mechanical Turk
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If you are going to be working on US English, Amazon Mechanical Turk can be 
a great resource for recruiting participants.

Pros: Fast! You can collect a hundred participants in an hour.  
More diverse than a university participant pool.

Cons: Not free. You must pay participants (and Amazon). 
Less control over the properties of the participants.



AMT Sandbox
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The first step is to create a requester account. (AMT divides users into 
requesters, who post tasks, and workers, who complete them).

If you want to practice using AMT without having to put up a real survey, you 
can use the requester’s sandbox. This is a simulated AMT environment where 
you can test your experiments without any risk (and without paying anything).



Two stages: create and manage
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I am going to use my real account to show you what creating an experiment 
looks like.

There are basically two stages: the create stage, where you create your 
experiment, and the manage stage, where you deploy your experiment and 
watch the results come in.



Creating an experiment
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When you click on Create, you will see a list of all of the experiments that 
you’ve run in the past. This lets you easily re-use them (or edit them) if you 
need to.

Your list will be empty (or have demos in it). But you can easily create a new 
one using one of the AMT HTML templates I have made available.



Create: Enter Properties
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There are three parts to creating an experiment: entering its properties, 
designing the layout, and then looking for errors. We start with entering the 
properties.

The first box is 
where you enter 
information that the 
workers will see.

I like to tell them 
how long I think it 
will take, how much 
I am going to pay, 
and any 
requirements that I 
have (that aren’t 
enforced by AMT - 
more on this soon.)



Create: Enter Properties
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The second box in “enter properties” is where you set the specific properties of 
this HIT (Human Intelligence Task — this is what AMT calls a task).

The first box is how 
much you will the 
participant.

The second is the 
number of 
participants you 
want to recruit per 
HIT. Each ordered list 
you have is a HIT, so 
you have to do some 
math here.

If you have 8 ordered lists, and want 24 participants in your sample, then you 
need 3 participants per list. Since each list is a HIT, you need 3 assignments 
per HIT. More generally:

Number of assignments per HIT = total sample size / number of ordered lists



Quick aside - How many participants?
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The number of participants that you need is a complex function of, at least, (i) 
the size of the effect you want to detect, (ii) sensitivity/noise of the task, and 
(iii) the statistical power you want to achieve (the probability of detecting the 
effect if it is present).

Forced−Choice Likert Scale Magnitude Est. Yes−No
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We can use the graph I 
showed you before to 
estimate this 
relationship.

This graph is based on 
50 phenomena from 
LI, and 1 observation 
per participant per 
condition.

There is also a general rule of thumb in statistics that says that you need at 
least 25 participants (or 24 if your lists are based on multiples of 4). So I 
suggest using the graph above to calculate a number, and treating 24 as the 
absolute minimum.



Create: Enter Properties
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The final box is where you can enter restrictions on your HIT. Technically, AMT 
allows you to set very strict requirements — you simply have to create a 
qualifying task, and then only allow participants who pass your qualifying task 
to participate in your experiment.

The problem is that there is a trade-off between restricting access and 
recruiting (diverse) participants. So I try to use a minimum of qualifications.

I set IP location to 
US to try to limit the 
number of non-
native speakers 
(more on this later).

I set HIT approval 
rates and number of 
HITs approved to 
numbers that will 
weed out very bad 
participants and very 
new participants.



Design Layout
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The next step is to design the layout of the HIT itself. The basic AMT interface 
uses HTML. Amazon has tried to make this easy by using a WYSIWYG editor 
for the HTML. But I find that the only way to really use this for an experiment 
is to have some familiarity with HTML.



Design Layout: Parts of the experiments
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Color coding: Amazon isn’t made for experiments. It treats each HIT (each 
ordered list) separately, so workers can take more than one if they want. But 
we want workers to take only one ordered list per experiment. So I use color 
coding to link separate HITs (ordered lists) that are related. I tell participants 
that they can only take a survey of this color once per day. This also lets me 
post more than one experiment per day if I want.



Design Layout: Parts of the experiments
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IRB Approval: In the second paragraph, I provide a link to my IRB approval 
document (called a study information sheet). This is a requirement of my IRB. 
Yours may be different (but most likely it will be the same).

Basic Info: In the third paragraph, I collect information that may be useful 
during data analysis (approved by the IRB). Crucially, I ask two questions that 
help me to screen out non-native speakers. Note that I don’t reject them for 
answering no, they are still paid, that way there is no incentive to lie.



Design Layout: Parts of the experiments
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Instructions: The next section is the instructions, along with the three 
instruction/anchor items, which are pre-filled with ratings.



Design Layout: Parts of the experiments
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The main experiment: The next section is the experiment itself. Notice that 
there are symbols on the left: ${1}. These are variables used by AMT. They 
will look for sentences in an input file that match these variables (more soon).



Design Layout: HTML source
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While it is technically possible to create this experiment using the WYSIWYG 
editor that amazon provides, it is easier to use the HTML source directly. In 
fact, you can copy in the HTML templates I’ve provided directly into the source 
window:



Preview and Finish
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The final preview step shows you what the experiment will look like to workers. 
It doesn’t (yet) contain the sentences for your experiment, so those are 
missing, but this is very close to the final format of the experiment.



Publish Batch
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The next step is to 
“publish” your “batch” 
of HITs. You do that 
by going back to the 
main “create” page, 
and clicking the 
orange button. 

When you do that, it 
is going to ask you to 
choose a file to 
upload your HITs. We 
haven’t talked about 
this input file yet…



The input file
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The input file must be a CSV file. It must contain a column for every variable in 
your HIT. There should be one variable in your HIT that tells you which ordered 
list it is. I call this variable surveycode. Then, there should be one variable for 
every item in your list. In this experiment there are 31 items, so there are 32 
total variables, and therefore 32 columns in the input file.

Each column is named after the variable. Then, you simply need to paste-
transpose each ordered list into a row:

You don’t need to construct 
this file from scratch. AMT 
will generate a template for 
your input file that you can 
download.



Publish Batch
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When you upload your 
input file, AMT will 
check it to make sure 
that there are no 
errors in the coding 
(that all of the 
variables match, and 
that it can read the 
file.)



Publish Batch
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AMT will then show you a new preview of your HITs, this time with the real 
sentences included.



Publish Batch
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Finally, it will 
show you a 
summary page 
that includes all 
of the 
information 
about the HIT, 
including how 
much money it 
will cost you.

You need a credit 
card to fund your 
account to 
actually run the 
experiment.



Manage: While the experiment is running
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While the experiment is running, you can watch its progress under the Manage 
tab. You will see a progress bar like this:

You must associate your AMT account with an email address. While 
the experiment is running, you should be actively monitoring that 
email address. Workers who run into problems (e.g., accidentally 
submitting the survey before it is complete) will email you. If you 
don’t respond, they will leave you negative feedback on sites like 
Turkopticon (a website where workers leave reviews for requesters). 

Pro Tip:



Another tip: incomplete surveys
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Workers are very protective of their approval rates - the proportion of HITs 
that are approved. They need to maintain high approval rates to qualify for the 
best paying HITs.

The problem is that the only way to not pay a worker is to reject their HIT. So, 
if they accidentally submit an unfinished survey, you either have to pay them 
for the unfinished work, or reject them. Nobody is happy about either option. 
That is why they email you when this happens. They want to find a solution.

If you are feeling nice, you can do the following. Look at the incoming results 
by clicking the results button at the top right of the progress bar. Find the 
worker’s incomplete HIT (usually it is the only one with empty responses, but 
you can also use their worker ID number). Then send them the ordered list in 
an excel spreadsheet, and tell them that if they finish it in the excel 
spreadsheet, and send it back to you, then you will approve their HIT. It takes 
work on your end, but it gets you the data, and saves them a rejection.



The results view
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If you want to see the 
results as they are coming 
in, you can, by clicking the 
results button:

This generates a (super wide) table of the results. If you want, you can 
approve results from this view, you can reject results from this view, you an 
sort by various properties (workerID, completion time, etc), etc. Remember 
to approve the results for all workers after the experiment is finished. 

There is also a button to generate a CSV of the results. Ultimately, when the 
experiment is finished, this is what you are going to want to do. 



Exercise 5
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Part 1: Complete the CITI training for working with human subjects.

This is required by UConn for you to run experiments using human 
participants. You only need to do this once. If you’ve already completed it, 
move on to part 2.

https://www.citiprogram.org/

You must complete the course called Human Subjects Research Course, Social/
Behavioral Research.

Part 2: Put our experiment up on the mechanical turk sandbox.

You have everything you need to put the experiment up online.

https://requestersandbox.mturk.com/

Submit the following to me: (i) a mechanical turk input file (csv) for our 
materials, (ii) a screenshot of the batch summary page that they give you right 
before you publish, and (iii) a screenshot of the list of available experiments 
that shows your experiment available.  

https://www.citiprogram.org/
https://requestersandbox.mturk.com/
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What is pre-processing
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Pre-processing is any manipulation you do to your data before the actual 
statistical analysis.

For organizational purposes, I am going to lump two types of pre-processing 
together in this section, though they are distinct in principle.

One type of pre-processing that you will always have to do is data formatting. 
You need to arrange your data in such a way that you can easily do the 
analysis (modeling, plotting, etc) that you need to do. Data formatting doesn’t 
change your data, so you should feel free to do whatever you need to do to 
make things work.

Another type of pre-processing that you may have to do is data 
transformation. This is where you take your raw data and perform some 
number of calculations to derive new data (e.g., averaging, z-score 
transformations, log transformations, or in EEG, filtering).

Data transformations should always be theoretically justified, and if possible, 
kept to a minimum. They change your data!

I am going to cover both in this section because (i) they both use R, and (ii) 
the result is a data file that you can use for statistical analysis and plotting.



Formatting your data

 138



Two formats: wide and long
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When humans enter experimental data into a table, they tend to do it in wide 
format. It is a very intuitive format for data.

age trial 1 trial 2 trial 3 trial 4

participant 1 18 2 7 6 1

participant 2 22 2 6 5 1

participant 3 23 3 7 4 2

In wide format, each row represents a participant. Each column represents 
something about the participant, such as a property or an experimental 
trial. And each cell contains the value for that property. 

Wide format has some uses in computer-aided analysis, typically as part of a 
calculation of a new value; but it is not the dominant format. I would say that I 
use wide format less than 5% of the time. 95% of the time, the analyses that 
you will perform will call for long format.



Two formats: wide and long
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When humans enter experimental data into a table, they tend to do it in wide 
format. It is a very intuitive format for data.

age trial 1 trial 2 trial 3 trial 4

participant 1 18 2 7 6 1

participant 2 22 2 6 5 1

participant 3 23 3 7 4 2

In wide format, each row represents a participant. Each column represents 
something about the participant, such as a property or an experimental 
trial. And each cell contains the value for that property. 

Wide format has some uses in computer-aided analysis, typically as part of a 
calculation of a new value; but it is not the dominant format. I would say that I 
use wide format less than 5% of the time. 95% of the time, the analyses that 
you will perform will call for long format.

Wide format grows longer by one row 
every time you add a participant, and 
by one column every time you add a 
trial/response/measurement/property. 
Because many experiments will have 
more trials/responses/properties than 
participants, the table will often look 
like a rectangle whose width is 
greater than its height.



Two formats: wide and long
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The primary format for computer-aided statistical analysis is long format. At 
first, long format is less intuitive than wide format, but you will very quickly 
learn to appreciate its logic.

participant age condition item rating

trial 1 1 21 long.island 1 1

trial 2 1 21 short.non 4 7

trial 3 1 21 long.non 2 5

trial 4 1 21 short.island 3 5

In long format, each row represents a trial. Each column represents a 
property of that trial, such as the ID of the participant in that trial, the 
condition of that trial, the item used in that trial, and ultimately the rating (or 
response) that came from that trial.



Two formats: wide and long
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The primary format for computer-aided statistical analysis is long format. At 
first, long format is less intuitive than wide format, but you will very quickly 
learn to appreciate its logic.

participant age condition item rating

trial 1 1 21 long.island 1 1

trial 2 1 21 short.non 4 7

trial 3 1 21 long.non 2 5

trial 4 1 21 short.island 3 5

In long format, each row represents a trial. Each column represents a 
property of that trial, such as the ID of the participant in that trial, the 
condition of that trial, the item used in that trial, and ultimately the rating (or 
response) that came from that trial.

Long format is called “long” because it 
leads to really long tables. Each 
subject will have a number of rows 
equal to the number of trials in the 
the experiment. So 40 participants x 
100 items = 4000 rows. Both formats 
grow longer with additional 
participants, but long format grows 
longer much faster. And long format 
grows longer with additional trials 
(wide format grows wider with 
additional trials).



AMT gives you results in wide format 
(IBEX gives results in its own hybrid format)
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But that is ok, we can use R to convert the results to long format.

Exercise 6: convert wide format AMT data to long format

In the document exercise.6.pdf, I give you a list of functions that you can (and 
probably will) use to do this. The trick with this, and any script you write, is to 
start by writing out the steps that you want to achieve in plain English. Then 
you can figure out how to make R perform those steps. In this case, you are 
re-arranging the data. So figure out how you would do that (with cutting and 
pasting, and filling in labels), and then convert those steps to R.



There are two solution scripts on the website
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I’ve created two scripts that can convert wide AMT data to long format: 
convert.to.long.format.v1.R and convert.to.long.format.v2.R.

Version 1 works very similarly to the way you would convert from wide to long 
if you were cutting and pasting in excel. It cuts away different pieces of the 
dataset, stacks the columns that need to be stacked, and pastes them back 
together.

Version 2 uses functions from two packages that were specifically designed to 
make manipulating data easier (including converting from wide format to long 
format). These packages are tidyr and dplyr. These two packages are now 
available in a single package called tidyverse. Tidyverse also includes other 
packages that are useful for data manipulation and visualization, including 
ggplot2, which we will use next time to make plots!

We will go through these later so that you can see what the code looks like. 
You can also add them to your growing library of R scripts (and use them in 
future experiments).



Next step: adding item information

 145

Although it is technically possible to 
upload item keys to AMT, and then 
have the AMT results contain item 
keys, I typically don’t do that (and 
IBEX cannot do that). AMT didn’t have 
the item or condition labels, so we 
need to add that ourselves.

This is where our keys.csv file comes into play. We are going to use it to add 
item codes to the dataset. Then, we can use R to convert the item codes into 
condition codes and factors for each item!

I have already written a script to add item keys, derive condition codes, and 
derive factor/level codes. It is called add.items.conditions.factors.r.

The csv file called 
results.long.format.no.items.csv 
contains the results of converting from 
wide to long format.

This means we need to add the item 
keys to our long format dataset.



Next step: Correcting scale bias (z-scores)
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Recall that pre-processing is any manipulation you do to your data before the 
actual statistical analysis. As a general rule, you should keep the pre-
processing to a minimum (pre-processing changes your data!). But there is at 
least one property of judgment data that people agree should be corrected 
before analysis: scale bias.

Different participants might choose to use a scale in different 
ways. 

Scale Bias:

There are two types of scale bias that are relatively straightforward to correct.

Different participants might use different parts of the scale, 
such as one using the high end, and another the low end).

Skew:

Different participants might use different amounts of the 
scale, such as one using only 3/7 responses, and another 
using the full 7 responses.

Compression/ 
Expansion:

PRO TIP: The best defense against scale bias is a well-designed 
experiment. Try to have the mean rating of your items equal 
the mid-point of your scale. Make sure all of your responses 
will be used, will be used an equal number of times!



Here is an example of skew
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If two participants are skewed in different ways, we are basically saying that 
their two private scales are separated from each other, but not because of 
meaningful differences in their judgments.

If you were to average their results together, you would end up with the same 
pattern, but there would be a lot of (non-meaningful) variability (or spread) in 
your data. 

participant 1 participant 2

condition 1

condition 2

condition 3

condition 1

condition 2

condition 3

Notice that these two 
participants both believe 
that condition 1 is greater 
than condition 2, and 
condition 2 is greater 
than condition 3. The 
difference here is skew on 
the scale.



Skew can be corrected with centering
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The way to correct skew is to identify the center point of all of the ratings 
for each participant, and then align the center points.

You have several options 
for choosing a center point 
(we will discuss these next 
time). The mean is the 
most common choice for 
centering to remove scale 
bias.

Important note: In this toy example, the center point is also the rating for a 
condition. This is not necessary. The mean of all of the ratings of a participant 
could be a number that isn’t the rating of a condition.

condition 1

condition 2

condition 3

condition 1

condition 2

condition 3

participant 1 participant 2



Skew can be corrected with centering
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If we align the center points, the same relationship holds among the 
conditions, and the same distances hold between the conditions. But the 
variability due to skew is removed.

condition 1

condition 2

condition 3

condition 1

condition 2

condition 3

This process is called mean centering; obviously, if you used a different 
center point, it would be a different kind of centering.

One way to align the centers 
is to subtract the mean from 
each data point: 

new point = old point - mean 

This has the effect of turning 
the mean in 0, and arranging 
the points around 0 based on 
their distance from the mean.

participant 1 participant 2



Here is an example of compression/expansion
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Here we have two participants that use different amounts of the scale. This 
means that the distances between the points is different for each of them. 
Notice that their centers are the same, so there is no skew. 

condition 1

condition 2

condition 3

condition 1

condition 2

condition 3

If we use the mean as a center to calculate distances, what we can see is that 
each participant is characterized by very different distances from the mean.

If we take the mean of these 
conditions, the means will be 
somewhere between the two, 
and there will be variability 
(spread) in our data set. 

But looking at the points, we 
see the same relative 
position, and we see that the 
distance differences affect all 
of the points. This suggests a 
scale bias issue, not a 
meaningful difference.

participant 1 participant 2

3

3

1

1



We need a standard unit of distance
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Again, you have a number of choices for a standard unit of distance. The most 
common choice is to use the participant’s standard deviation.

condition 1

condition 2

condition 3

condition 1

condition 2

condition 3

We can use the standard deviation to standardize the distances for each 
participant. Basically, we just divide each distance by the standard deviation!

We will discuss standard 
deviation in detail next class. 

For the curious, it is the root 
mean square error (square 
the distances from the mean, 
sum them, divide by n, then 
take the square root). 

But for now, just think of it as 
an average measure of the 
distance that each data point 
is from the mean (for each 
participant).

participant 1 participant 2

3/sd

3/sd

1/sd

1/sd



We need a standard unit of distance
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The result is that both participants use the same distance unit, “standard 
deviation units”. Because it was simple unit conversion (division), the structure 
of the data is unchanged. 

One way people talk about this is that participants 1 and 2 are using different 
scales. But finding a common unit of distance, we can put them on the same 
scale. This can be done for any two scales — even qualitatively different ones.

By using a standard unit of 
distance, we can see the 
structure of the data 
without the interfering 
compression/expansion 
issue. 

Here we see that both 
participants share the same 
center, and they share the 
same relative distance from 
the mean (I just made 
these numbers up).

condition 1

condition 2

condition 3

condition 1

condition 2

condition 3

participant 1 participant 2

1.5 sd

1.5 sd

1.5 sd

1.5 sd



Putting both steps together: z-scores
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The z-score transformation combines both steps: it centers the scores around 
the mean, and it converts the units to standard deviations.

Z =
the judgment - participant’s mean

participant’s standard deviation

Pro Tip 1: It is crucial that the z-score transformation is applied to each 
participant separately. That way you are eliminating the scale bias for each 
individual participant. If you z-score transform the entire sample at once, it 
won’t eliminate any scale bias, it will just convert the values to z-units (think 
about this offline to see why!).

Pro Tip 2: If your goal is to eliminate scale bias, you have to use all of the 
data points from the participant (target items and fillers, not just the target 
items). I would also recommend not including the practice items. The practice 
items are there to help people learn how to use the scale. So those items might 
have different bias properties than the later items. So, my suggestion is to 
perform the z-score transformation using all of the item except the practice 
items.



Some thoughts about z-scores
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The primary benefit of the z-transformation is that it will help to eliminate the 
most common forms of scale bias, making the comparison of judgments across 
participants less noisy. 

Because the z-transformation does not alter any of the information in a data 
set (it is called a linear transformation), there are not many risks at all.

This reduction in noise results in a noticeable increase in statistical power 
(scale bias introduces additional variance into the model).

The z-score scale is also intuitive: 0 represents the mean, the sign of the score 
indicates if it is above or below the mean, and the number represents the 
number of standard deviations!

Finally, it is relatively easy to compute. So all we need to do is apply it to each 
participant.

The only real risk would be if the the skew that you saw as scale bias was 
actually meaningful. You need to be sure it is not meaningful. Typically, if each 
participant saw the same items, then any bias is an artifact; but if you give 
participants wildly different items, scale differences might be meaningful.

Advantages:

Disadvantages:



Exercise 7: Adding z-scores to our dataset

 155

Exercise 7: add z-scores to the dataset

In the document exercise.7.pdf, I give you a list of functions that you can (and 
probably will) use to do this.  

The trick with this is to figure out how you would calculate z-scores for each 
participant, then figure out how to make R perform these calculations.



My scripts: Adding z-scores to our dataset
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The first is the long way: add.z.scores.v1.r. This calculates z-scores the same 
way you would do it if you were using excel by hand.

The second takes advantage of two built-in functions in R: split() and scale(). 
Once you understand how the z-score works, add.z.scores.v2.r will save you 
time.

add.z.scores.v1.r add.z.scores.v2.r

On the website I have two versions of the z-score script. Once again, I’ve made 
two: a longer one and a shorter one.



Removing outliers
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An outlier is an experimental unit (either a participant or a judgment) that is 
substantially different from other experimental units. Outliers add noise to your 
data, which can lead to errors (a null result when there is a real difference, or a 
false positive result when there is no real difference).

There are a number of ways to deal with outliers. Here I will review three 
common approaches, in the order in which I recommend them (with colors 
indicating the danger!).

Run more participants. This will diminish the impact of an outlier. The 
nice thing about this approach is that you don’t have to make any 
assumptions. You just report the data you have with no changes.

1.

Use gold-standard questions. If you include sentences with known 
ratings, you can identify participants who rate these known sentences 
substantially differently (than expected), and eliminate those participants. 
There are two nice properties of this approach: (i) it does not rely on the 
experimental items, and (ii) you remove entire participants.

2.

Trim (or Windsorize) the data. You can also look at the distribution of 
judgments for each experimental item, and remove outliers. The risk here is 
that bias can creep in (you are looking at the experimental items directly, so  
you could make choices that bias toward one outcome or another).

3.



An approach that uses gold-standard questions
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My preferred approach is to simply run more participants. AMT makes this very 
easy. The only downside is that it increases the cost of the experiment.

If I can’t run many participants, my second choice is to use gold-standard 
questions. In the design that we have been using, all of our filler items can 
serve as gold-standard questions because we pre-tested the fillers, and know 
exactly what their expected rating should be (the mean or mode).

Of course, there is some noise in judgments, so we don’t expect every 
participant to give the precise mean rating for each filler. So we don’t just want 
to eliminate everyone whose response differs from expected value. That would 
probably eliminate everybody. Remember, we expect variation in humans.

So what we want to do is quantify the variation that each participant shows 
from the expected judgments, and then eliminate any participant that shows 
substantially more variation than the other participants.

One common way to do this is with a sum of squares measure of error.



Calculating variation using sum of squares
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item expected observed difference difference2

1F 1 2 1 1

4F 4 2 -2 4

6F 6 7 1 1

sum: 0 6

We run the calculation for each participant separately.

First, we calculate the difference between the expected value of each filler and 
the value that we observed from the participant

We can’t sum this value directly, because it could be either positive or negative, 
and the two will cancel each other out (given the appearance of good fit). So, 
next, we square those difference scores to eliminate the negative signs.

Finally, we sum the squared differences to obtain a final variation score for the 
participant.



Setting a criterion for exclusion

 160

After we run this for each participant, we will end up with a distribution of 
scores like this (these are derived from identify.and.remove.outliers.r):

One common way to identify outliers (in general) is to take 
the mean and standard deviation of some distribution of 
values, and then call any value that is some number of 
standard deviations away from the mean (in either 
direction) an outlier. Since only high scores are bad here, 
we need only look in the positive direction.

The mean of these values is 27.367

The standard deviation of these values is 16.694

So any value above 60.756 would be an outlier.

There are only two subjects that are above this threshold, 
so by this procedure there are two outliers.

The number of SDs that you choose determines how many 
outliers you will have. A low number like 2 will yield more 
outliers, a high number like 4 will yield fewer.



Now, let’s look at R and the scripts!
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What is R?
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R is a programming language designed 
for statistics. That’s it.

It is called R for two reasons: there is a 
proprietary statistical language called S 
that serves as a model for R, and the 
two creators of R are Ross Ihaka and 
Robert Gentleman.

Why do so many people love R?

It is free, open-source, and cross-platform.

It has a giant user community. Anything you want to do has probably been 
done before, so there are pre-built packages and internet help groups galore.

It allows you to do three things that you need to do: (i) manipulate data/text 
files, (ii) analyze your data, and (iii) create publication-quality figures (no, you 
can’t use excel for figures in publications).

Yes, Matlab (proprietary) and Python (free) can do the same things. You can 
absolutely use those if you prefer. But R is specifically designed for stats and 
graphics, whereas Matlab is designed for matrix algebra, and python is a 
general computing language.



Interacting with R: the R console
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R is a programming language. You 
need to find a way to interact with the 
language. The R-project (the 
developers of R) provide a “console” 
to allow you to interact with the R 
language. You type a command into 
the console, and the R language 
implements that command.

If you want to save your code, you 
can type it into a text editor like 
TextWrangler (Mac) or Notepad++ 
(Windows). Then you just have to 
move the text from the editor to the 
console window to run it (you can 
copy and paste, or create a shortcut 
key that does it for you).



Interacting with R: R Studio
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R Studio is a third-party piece of 
software (free) that allows you to 
interact with the R language in a single, 
unified environment.

A text editor for saving 
your code.

The R console that runs 
your commands. See your 

plots here.

See objects 
and history 
here.



R is an interpreted language
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R is an interpreted language. That means that you tell it to run a function, 
and it does. You can run one function at a time, or several in sequence.

Here are 5 functions.

The first three only 
have one argument. 
They assign a 
number to a variable.

The fourth one has 
multiple arguments. 
It calculates the sum 
of the three 
variables. The fifth 
takes one complex 
argument.

Notice that R runs 
each function. If it is 
a calculation, it gives 
you the result.



Setting the working directory
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R needs a working directory to do its work. The working directory is the 
directory (or folder) on your computer where it looks for files. This is also 
where it will save files.

To see the current working directory that R is using, you can type the 
command getwd(). R will print the current working directory in the console 
window.

To change the working directory, you can use the command setwd(). Unlike 
getwd(), setwd() needs an argument inside of the parentheses. The argument 
it needs is the name of the new working directory. I like to use my desktop for 
small projects, so I type the following setwd(“/Users/jsprouse/Desktop”). 
Notice that the directory must be in quotes. Character strings must be in 
quotes in R (either double or single, it is your choice). 

Also note that nothing 
seems to happen when 
you set the working 
directory. R just does that 
in the background, and 
waits for a new command. 



Base functions and add-on packages
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The language R comes with a (very large) set of functions built-in. This built-in 
library of functions is called the base.

But R is also a complete (as in Turing-complete) programming language, so 
you can easily create new functions for yourself. There is literally a function 
called function() that you can use to define a new function of your own.

When people write functions that they think are useful enough to share with 
the world, they combine them together into something called a package (or 
library). Packages often consist of several thematically-related functions that 
help you run a specific kind of task (or analysis). 

These user-created packages are part of the reason that R is so incredibly 
useful. Nearly every analysis you can think of has been implemented by 
somebody in an R package. You just need to do some searching to find the 
right package for the job you want to do. (And if it can be done using base 
functions, somebody on the internet has posted the code to do it.)



Installing and loading packages
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Once you know the name of a package that you want to use, you can install it 
right from the command line in the console of R. 

To install a new package, you can use the command install.packages(). 
Then, you just put the name of the package, in quotes, inside of the 
parentheses.

For example, if you want to install the tidyr package, you would type 
install.packages(“tidyr”) and hit enter. R will find the package in an online 
repository (called CRAN for comprehensive R archive network), and install it on 
your machine. 

R does not load every package that you install when you open R. You have to 
tell it to load a package (some of them are large, so it would take time and 
memory to load them all). To do this, you use the function library(). You put 
the name of the package inside the parentheses, this time without quotes.

For example, if you want to use the functions in tidyr, you would run the 
command library(tidyr) and hit enter. 



Reading/Writing csv files
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To read in data from a CSV file, you use the function read.csv():

amtdata = read.csv(“raw.data.from.AMT.csv”)

If you type the name of the data set, amtdata, and press enter, R will print it 
out for you on the screen.

You can also use the functions head() and tail(). Head(amtdata) will show you 
the first 6 rows of the data set; tail(amtdata) will show you the last 6 rows.

To write an existing piece of data in R to a CSV file, you use the aptly named 
function write.csv(), where “x” is the argument specifying the data you want to 
write, and “file” is the name of the CSV file you want R to create:

write.csv(x=amtdata, file=“my.first.file.csv”, row.names=FALSE)

Notice that I’ve used the optional argument row.names=FALSE here to 
suppress R’s default action of putting row names in the first column of the CSV.



Reading about functions inside of R
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R comes with a fairly complete help system, and you should use it.

The primary use of the help system is to see all of the arguments that you can 
pass to a function, along with descriptions of what they do, and examples that 
demonstrate them.

To see the help page for a function, just type a question mark followed by the 
function name, and press enter:

?write.csv

Go ahead and do that now, and take a look at all of the information it provides. 
It may take a while to get used to reading this information (it is dry, without 
much hand-holding), but trust me, over time, you will find the help files really 
useful.



Data types in R
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R recognizes several different data types:

vector:

matrix: A two dimensional object, where all of the items in the matrix are of 
the same type (all numbers, or all character strings, etc).

A one dimensional object, like a sequence of numbers.

array: Like a matrix, but can have more than two dimensions.

data 
frame:

Two dimensions, and perfectly suited to data analysis. Each column 
can be of a different type (numbers, strings, etc). 

list: Just a collection of objects. This is the most general data type. It 
allows you to collect multiple (possibly unrelated) objects together 
under one name.

For experimental data analysis, the goal is to put your results into a data 
frame. Along the way, you may construct vectors, matrices, etc. But the final 
object will be a data frame that you can use to run analyses and create plots.



Indexing data types
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Indexing means identifying a specific element in your data. As you can 
imagine, the way that you index an element depends on the data type that you 
have.

vector: A one dimensional object, like a sequence of numbers.

You can create a vector using the c() function (it stands for “combine”):

x = c(1, 3, 5, 7, 9)

And you can index an element in a vector by using bracket notation, and 
referring to the ordinal number of the element:

x[2] #this will return 3

x[5] #this will return 9

(the hash mark indicates a comment in R)

You can also change an element in a vector, while leaving everything else the 
same, by using the bracket notation:

x[2] = 17 #this will make x the sequence 1, 17, 5, 7, 9

x[5] = 23 #this will make x the sequence 1, 17, 5, 7, 23



Indexing data types
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matrix: A two dimensional object

You can create a matrix using the matrix() function:

y = matrix(1:16, nrow=4, ncol=4)

And you can index an element in a matrix by using bracket notation with two 
numbers. The first is the row number, the second is the column number.

y[2,4] #this will return the element in row 2 / column 4

y[2,] #this will return the entire second row

y[,4] #this will return the entire fourth column

Just like with vectors, you can replace elements in a matrix using the bracket 
notation. I’ll leave that to you.

y[1:2,3:4] #this will return the first two rows of columns three and four



Indexing data types
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data frame: A two dimensional object, optimized for data analysis.

You can create a data frame using the data.frame() function:

names = c(“Mary”, “John”, “Sue”)

ages = c(22, 25, 27)

colors = c(“red”, “blue”, “green”)

people = data.frame(names, ages, colors)

You can index data frames using bracket notation:

You can also index data frames by naming the columns using the $ operator:

people[2,3] #this will return “blue”

people$names #this will return the names column as a vector

people$names[2] #this will return “John”



Indexing data types
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list: A collection of objects

You can create a list using the list() function:

mylist = list(x, y, people)

You can index elements of a list using a double bracket:

Once you’ve indexed a list element, you can use bracket notation to index 
specific elements inside that element:

mylist[[1]] #this will return the vector x

mylist[[2]][2,4] #this will return 14

mylist[[2]] #this will return the matrix y

mylist[[3]] #this will return the data frame people



Assignment operators
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You’ve already seen one assignment operator in action - the equal sign. An 
assignment operator allows you to assign an object (like a vector or matrix) to 
a variable name (like x, or mylist).

There are three assignment operators in R:

x = c(1,2,3) The equal sign assigns the element on the right to the 
variable name on the left.

x <- c(1,2,3) The left arrow (made from a less than sign and a dash) 
assigns to the left.

c(1,2,3) -> x The right arrow (made from a greater than sign and a dash) 
assigns to the right.

Logical operators check to see if a given mathematical statement is true. I put 
them here because they shouldn’t be confused with assignment operators:

5 == 2+3 This is logical equals. It checks to see if the values on either 
side are equal to each other. Notice it is two equal signs.



Logical operators
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Logical operators check to see if a given mathematical statement is true. I put 
them here because they shouldn’t be confused with assignment operators:

5 == 2+3 This is logical equals. It checks to see if the values on either 
side are equal to each other. Notice it is two equal signs.

5 > 2 
5 < 8

Greater than 
Less than

5 >= 2 
5 <= 8

Greater than or equal to 
Less than or equal to

5 != 4 No equal to.

You can apply logical operators to any data type, including matrixes, data 
frames, etc.

y <= 5 #Remember that y is a 4x4 matrix. This will return a 4x4 
matrix of TRUEs and FALSEs.



Learning R
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The assignments in this course will help you learn R. I’ll give you a list of 
functions that will help you with the assignment, and then it will be up to you 
to work with them to complete the assignment.

I am doing it this way because the only way to learn a programming language 
is to jump in and do it. That said, I realize that you won’t be able to do it 
without help. So here are the ways to get more knowledge: 

1. Google your question (the answer will be on StackOverflow)

2. Read an R tutorial

3. Read a book

R has a huge user community. Google your questions. You will likely find an 
answer, or an answer to a similar question.

There are tons of free tutorials out there. I am not going to recommend any 
specific ones, because they all cover the same stuff for the most part.

There are tons of free R books out there. Again, just google for them.
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Before anything else — Look at your data!
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I cannot stress this enough. You have to look at your data. You can’t just 
plop it into a statistical test and report that result. Well, you can, but you may 
miss something important. (And, to be fair, I am guilty of not looking at my 
data enough, so I say this with real experience behind it — look at your data!)

There are lot of different ways to “look at” your data, and there is no 
prescribed way that will work for all experiments. But there are two graphs that 
are going to be important for nearly all experiments: (i) the distribution of 
responses per condition, and (ii) the means and standard errors per condition.
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Plotting in R: base vs ggplot2
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One of the major benefits of R is the ability to make publication quality figures 
easily (and in the same environment as your statistical analysis). 

R’s base comes with all of the functions that you might need to create beautiful 
figures. The primary function is plot(), with a long list of additional functions 
that will add tick marks, add labels, format the plotting area, draw shapes, etc.

If you spend the time to become proficient at plotting with base functions, you 
will find that you end up drawing your figures in layers: you draw the plot area, 
you add points, you add lines, you add error bars, you add a legend, etc.

There is a package, written by Hadley Wickham (also the creator of dplyr and 
tidyr), called ggplot2 that takes this fact to its logical conclusion. The two g’s in 
the name stand for “grammar of graphics”. The idea is that the functions in 
ggplot allow you to construct a beautiful figure layer by layer, without having to 
spend as much effort as you would with the base R functions.

The received wisdom is that base R functions give you the most flexibility, but 
require the most effort to create a good looking figures, while ggplot requires 
the least effort to create good looking figures, but you lose some flexibility (or 
rather, deviating substantially from the default look in ggplot will lead to 
complex code, just like base R).



Why do we look at distributions?
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A distribution is simply a description of the number of times that an event (in 
this case, a judgment or rating) occurs relative to the other possible events.

For each sentence type in our experiment, we assume that it has a single 
underlying acceptability value. However, there are other factors affecting its 
judgment — the lexical items and meaning of the specific item, the noise of the 
judgment process itself, any biases that the subject has, etc. So, in practice, 
we expect that there will be a distribution of judgments for a sentence type.

The first thing we want to do is look at that distribution for each of our 
experimental conditions. In theory, we expect the distribution of judgments to 
be relatively normal (or gaussian, or bell-shaped). The reason for this is that 
we expect the other factors that are influencing the judgments to be relatively 
random. When you mix a bunch of random factors together on top of a non-
random factor (the sentence type), you get a normal (gaussian, bell-shaped) 
distribution.

So what we want to do is look at the distribution of each of our experimental 
items to make sure that they are roughly normally distributed. If they aren’t 
roughly normal, then something might be wrong in our experiment (an outlier 
or two, a non-random bias for some number of participants, a non-random 
factor that we failed to control for, etc.)



Histograms
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A histogram shows the counts of each response type. The benefit of a 
histogram is that the y-axis, counts, is very intuitive, and shows you what the 
raw data looks like.

One drawback of a histogram is that the shape of the distribution in a 
histogram is strongly dependent on the size of the bins that you choose (with 
continuous data, like z-scores, you have to define bins). If the bins are too 
small, a normal distribution will look non-normal, and if the bins are too big, a 
non-normal distribution can look normal.

You can use the code in distribution.plots.r to generate histograms with 
different bin-widths and see the effect:
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Density plots
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A density plot shows you the probability density function for your distribution. 
The “curve” that people think of when they think about distributions is a 
probability density function. The idea behind a probability density function is 
that it shows the relative likelihood that a certain judgment will occur.

Much like binning, pdfs are necessary because there are an infinite number of 
possible values on a continuous scale (like z-scores), so the probability of any 
given judgment is infinitesimal. That isn’t helpful. So we use the pdf to 
calculate the probability that a judgment is between two possible values.

Speaking more precisely, the total area under the curve of a pdf will be 1, and 
the area under the curve between two points will be the probability that a 
judgment will be between those two values.
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Like histograms and binning, pdfs will 
vary based on the kernel density 
estimation method that you use to 
calculate them. R tries its best to do 
this in a reasonable way.

You can use the code in the script to 
generate density plots using R’s default 
kernel density estimation.



Combining histograms and density plots
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You can combine histograms and density plots into one figure if you want. The 
code in distribution.plots.r shows you how to do this.

One thing to note is that 
frequencies and density are 
typically on different scales. 
Frequency is typically much larger 
than density. So if you plot the 
two together, the density curve 
will be flattened.
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So what we probably want to do is 
use density alone for the y-axis, 
and scale the histogram to fit. R 
does this very easily (see the 
code). The result makes the 
histogram harder to interpret, but 
allows you to compare the raw 
responses to the estimated 
density function nicely.
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Arranging the plots in different ways
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You may have noticed that the 
distribution plots have been arranged 
according to the two factors and their 
levels. This is called faceting, and is a 
very convenient way to organize 
multiple plots.

You can organize faceting based on any factor you want. 
You can also do it based on one factor alone (creating a 
single column or a single row).
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The trick is to choose an arrangement that helps readers 
understand the data. For example, if you aligned the 
four conditions in a column, you can highlight the 
different locations of the distributions on the x-axis. This 
makes it clear that the fourth condition tends to have 
lower acceptability than the other three. 



Plotting means and standard errors
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The second major plot type that you will (pretty much always) want to create 
is a plot of the condition means and their (estimated) standard errors.

For any design that has more than one 
factor (two factors, three factors, etc), 
you will probably want to create 
something called an interaction plot. 
An interaction plot is a line-plot 
arranged by the levels of the factors.

In a 2-D plot, you can only directly 
specify one axis. The other is the value 
of the responses. Typically, you specify 
the x-axis, and let the y-axis be the 
value of the responses. 

So, if we specify the x-axis to be the 
two levels of the DEPENDENCY LENGTH 
factor, we then need to use something 
else to specify the levels of EMBEDDED 
STRUCTURE. We can either use color or 
the type of line.
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Plotting means and standard errors
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If you look at the code in interaction.plot.r, you can see that we use the 
summarize() function from dplyr to calculate three numbers.

We calculate the mean of each 
condition. We plot these means as the 
points in the interaction plot.
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We calculate the standard deviation of 
each condition. We do not plot the 
standard deviation. We just use it to 
calculate the standard error.

We calculate the estimated standard 
error of each mean. The formula for 
this is standard deviation divided by 
the square root of the number of 
participants. The error bars in the plot 
are 1 standard error above and 1 
standard error below the mean.

As a rule of thumb, non-overlapping 
error bars tend to be statistically 
significant in a null hypothesis test.



Digression: Basic Statistics Concepts
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In order to understand why we plotted means and standard errors, we need to 
understand a little bit about statistics — what sorts of information we are 
looking for, and how it is calculated.

Concepts we need to know

1. Population vs sample

2. Parameter vs statistic

3. Central Tendency

4. Variability (or spread)

5. Parameter estimation (from a statistic)

6. Testing hypotheses about populations 
(sampling distribution of the mean, 
and standard error of the mean)

With these concepts, 
everything about the plots 
makes sense. If you already 
know these concepts, you 
can skip to the next section. 
If you don’t, you (or we) 
should work through these.

I have created an R script 
called parameters.statistics.r 
that helps to illustrate some 
of these concepts using 
simulations. 



Population versus Sample
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The complete set of items/values. This is most commonly 
thought of as people (e.g., all of the people in the US is the 
population of the US), but it can also be other units such as 
judgments (the complete set of acceptability judgments would 
be the population of judgments). A population can be defined 
using whatever criteria you want (e.g., the population of 
people born in NJ; or the population of judgments given to a 
certain sentence).

Population:

A subset of a population. The process of selecting the subset 
from a population is called sampling. Sampling is usually 
necessary because most populations of interest are too large 
to measure in their entirety. Samples can be chosen randomly, 
or they can be chosen non-randomly. How a sample is chosen 
matters for the types of inferences you can make. (Random is 
best… everything else limits your inferences.)

Sample:



Parameter versus Statistic
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Because both populations and samples can be characterized as distributions, 
you can calculate things like means, medians, variances, and standard 
deviations for both of them.

A number that describes an aspect of a population. Usually 
written with a greek letter.

Parameter:

And now you can see where the word “statistics” comes from. Statistics are 
the numbers we use to characterize samples… and since experiments are 
conducted on samples (not populations), we are usually manipulating 
statistics, not parameters. There are different types of statistics:

Statistic: A number that describes an aspect of a sample. Usually 
written with a Roman (English) letter.

Descriptive Statistic: A statistic that describes an aspect of a sample.

Estimator: A statistic that can be used to estimate a 
population parameter.

Test Statistic: A statistic that can be used to make inferences.



Describing Distributions (population or sample)
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It is great to look at distributions, and it is great to use the probability density 
function to predict probability. But sometimes, we want single numbers that 
can describe some aspect of the distribution. 

There are different types of information that one could be interested in. Two 
types that arise frequently are:

Location, or 
Central Tendency: 

Variability, or 
Dispersion/Spread: 

A measure of location/central tendency gives a single 
value that is representative of the distribution as a 
whole (its expected value). The three most common 
measures of this are the mean, median, and mode.

A measure of variability/dispersion/spread gives a 
single value that indicates how different the values in a 
distribution are from each other. The most common 
measure are variance and standard deviation, although 
you may also encounter the absolute deviation.

We will see these over and over again, but for now, I will simply define them so 
that we are all on the same page mathematically when they come up later.



Central Tendency: Mean
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Let’s start with the (arithmetic) mean, which is commonly called the average.

The sum of the values, divided by the number of values (the 
count) that were summed.

Mean:

x1 + x2 + … xn

n
Mean =

The mean is by far the most common measure of central tendency, so you will 
encounter (and use it often). The primary benefit of the mean is that it takes 
the “weight” of the values into consideration. But this is also a drawback, as it 
means that it is distorted by very large (or very small) values.

mean(1, 2, 3, 4, 5) = 3

mean(1, 2, 3, 4, 10) = 4

mean(1, 2, 3, 4, 100) = 22



Central Tendency: Median
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The next most common measure of central tendency is the median.

The median is the value in a set of values that divides the set into 
two halves (an upper half and a lower half). If there is an odd 
number of values in the set, the median will be one of the values in 
the set. If there is an even number, the median will be the mean of 
the two middle values.

Median:

The median is interesting for a number of reasons, but perhaps the most 
valuable aspect of the median is that it is robust to outliers. This is just a 
fancy way of saying that the median is not influenced by very large (or very 
small) numbers. This is in stark contrast to the mean, which is not.

mean(1, 2, 3, 4, 5) = 3

mean(1, 2, 3, 4, 10) = 4

mean(1, 2, 3, 4, 100) = 22

median(1, 2, 3, 4, 5) = 3

median(1, 2, 3, 4, 10) = 3

median(1, 2, 3, 4, 100) = 3



The Mean/Median see-saw analogy
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I am not kidding when I say that there is a nifty visual analogy for means and 
medians involving a seesaw.

If you imagine that the values in your set indicate the location on a seesaw 
where people (of identical weight) are sitting, then the mean is the point 
where you would place the fulcrum in order to balance the seesaw. The median 
is the point where you would place the fulcrum in order to put half of the 
people on each side of the seesaw.



Mean and Median in real distributions
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To see the difference between means 
and medians, we can calculate the 
means and medians of each of our 
experimental conditions, and then 
overlay a vertical line for the mean and 
median.

The script mean.median.lines.r shows 
you how to do this.

As you can see, the mean tends to be 
pulled to the side by long tails. In a 
perfectly symmetric distribution (like the 
normal distribution), the mean and 
median will be identical.



Variability

 197

Let’s build up this idea in a several steps.

The variability of a data point must be measured against a 
reference point. This will probably be the central tendency (or 
expected value) of the set of values (the distribution). Most likely 
this will be the mean. So the variability of a data point is simply its 
difference from the mean:

Step 1:

variability of x = (x - mean)

Now, you may think that the variability of a set of values (a distribution) can be 
derived by adding up the variability of all of the values in it. Let’s try this and 
see what happens. Let’s say your set is (1, 2, 3, 4, 10). The mean is 4.

variability of 1 = 1 - 4 = -3

variability of 2 = 2 - 4 = -2

variability of 3 = 3 - 4 = -1

variability of 4 = 4 - 4 = 0

variability of 10 = 10 - 4 = 6

sum of the variability:  

-3 + -2 + -1 + 0 + 6 = 0



Variability
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Because of the definition of the mean, the deviation (from the mean) of the 
points below the mean will always equal the deviation of the points above the 
mean. So it is impossible to simply sum this deviation.



Variability
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OK, so now we know that we can’t just sum (x-mean), because that will always 
yield a sum of 0. What we need is a measure that of variability for each data 
point that is always positive. That way, when we add them up, the total will be 
positive.

The most common solution to this problem (although not necessarily the most 
intuitive) is to square the difference:

variability of x = (x - mean)2

Since squares are always positive, this will avoid the summation problem that 
we saw before:

variability of 1 = (1 - 4)2 = 9

variability of 2 = (2 - 4)2 = 4

variability of 3 = (3 - 4)2 = 1

variability of 4 = (4 - 4)2 = 0

variability of 10 = (10 - 4)2 = 36

sum of the variability:  

9 + 4 + 1 + 0 + 36 = 50 



Variance

 200

We can call this the sum of squares:

Now, we could try to use the sum of squares as our measure of variability. But 
one problem with the sum of squares is that its size is dependent upon the 
number of values in the set. Larger sets could have larger sum of squares 
simply because they have more values, even though there might really be less 
variation.

sum of squares = (x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2

One solution for this is to divide the sum of squares by the number of values. 
This is similar to the mean — it is like an average measure of variability for 
each point. We call it the variance:

variance =
(x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2

n



Standard Deviation
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Although variance is a useful measure, it does have one problem. It is in really 
strange units - the units of measure squared!

variance =
(x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2

n

acceptability judgments squared?

The fix for this should be obvious. We can simply take the square root of the 
variance to change it back into un-squared units. We call this the standard 
deviation:

standard 
deviation =

(x1 - mean)2 + (x2 - mean)2 + … + (xn - mean)2

n

same units as the original values



Absolute Deviation

 202

The first time you see standard deviation you might find yourself wondering 
why we square the deviations from the mean to eliminate the negative signs. 
Couldn’t we just take the absolute value? The answer is yes. It is called the 
absolute deviation:

absolute 
deviation=

|x1 - CT| + |x2 - CT| + … + |xn - CT|
n

OK, so how do we choose between the standard deviation and the absolute 
deviation? In practice, standard deviations tend to accompany means, and 
absolute deviations tend to accompany medians. Here’s why:

The mean is the measure of central tendency that minimizes variance (and 
standard deviation). The variance of the mean will always be smaller than (or 
equal to) the variance of the median.

The median is the measure of central tendency that minimizes the absolute 
deviation. The absolute deviation of the median will always be smaller than (or 
equal to) the absolute deviation of the mean.



Estimating a parameter from a statistic
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Let’s say you are trying to estimate the variance in a population. But you don’t 
know the mean of the population. What do you do? You estimate the 
parameter from your sample.

true σ2 =
(x1 - µ)2 + (x2 - µ)2 + … + (xn - µ)2

n

This is simple enough. You can use the mean of your sample as an estimate of 
the mean of the population. I’ve been loose with notation up to now. Let’s do it 
right. We use greek letter for parameters, and roman letters for statistics: 

Some statistics are better at estimating parameters than others. It turns out 
that estimating the variance using the sample mean will underestimate the 
population variance. When an estimate systematically under- or over-estimates 
a parameter, we call it a biased estimator. 

For a really nice analytic explanation of why this will always underestimate the 
population variance, see the wikipedia page for Bessel’s correction: https://
en.wikipedia.org/wiki/Bessel%27s_correction. For a simulation that 
demonstrates this empirically, see the script parameters.statistics.r.

estimated σ2 =
(x1 - x̄)2 + (x2 - x̄)2 + … + (xn - x̄)2

n

µ = population mean

x̄ = sample mean

https://en.wikipedia.org/wiki/Bessel's_correction
https://en.wikipedia.org/wiki/Bessel's_correction


The right way: Bessel’s correction and df
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The right way to estimate the population variance using the sample mean is to 
apply Bessel’s correction to the equation:

σ2 =
(x1 - µ)2 + (x2 - µ)2 + … + (xn - µ)2

n

s2 =
(x1 - x̄)2 + (x2 - x̄)2 + … + (xn - x̄)2

n-1

µ = population mean

x̄ = sample mean

The reason this works is contained in the proof of Bessel’s correction, which is 
far beyond this class. However, the intuition behind it is simple. 

When you calculate a statistic, a certain number of values have the freedom to 
vary. We call this number the degrees of freedom.

When you calculate the first statistic from a sample, all of the values are free. 
You have n degrees of freedom. But when you’ve calculated one statistic, and 
are calculating the second one, you only have n-1 degrees of freedom.

Think about it. If you know a sample has 5 values, and a mean of 7. How many 
of the values are free? Just 4. Once you set those 4, the 5th is constrained to 
be whatever makes the mean equal 7. In the equation above, we already know 
the mean, so we only have n-1 degrees of freedom.



We can see the bias using a simulation
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population x 10,000

In the script parameters.statistics.r, I used 
R to generate a population of 10,000 
values with a mean of 0 (µ=1) and a 
variance of 1 (σ2=1). The mean is in red.
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sample x 20 = x̄1 and σ2

I then took 1,000 samples from the 
population, each with 20 values. I 
calculated the variance using the mean for 
each one. That gives us 1000 variance 
estimates. We can plot the distribution of 
variance estimates, with the mean of the 
estimates as a dashed red line. We can 
compare that to the actual variance, 
which is a black solid line. As you can 
see, the mean estimates is low!
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And we can see the effect of the correction!
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This simulation was without correction

This is just a repeat of the graph from the 
last slide. These are the uncorrected 
variance estimates. The mean of these 
estimates is lower than the population 
variance. This is the bias we talked about.

This plot uses the same 1000 samples 
from the population. The only difference is 
that the variance is calculated using (n-1) 
rather than n. Again, the mean of the 
estimates as a dashed red line and the 
actual variance is a solid black line. 
They now partially overlap. In general, this 
will be a much closer estimate, with no 
systematic bias. It will approach the true 
value as the number of samples increases.
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Now let’s simply use Bessel’s correction
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Why all of this talk of populations, parameters, 
samples, and statistics?

 207

For simplicity, let’s imagine that we only have two conditions in our 
experiment. And let’s imagine that we test our conditions on two different sets 
of 28 people (that’s a between-participant design).

We want to know if the two conditions are different (or have different effects 
on our participants). One way of phrasing this question is that we want to 
know if our two samples come from different populations, or whether they 
come from the same population:

targetcontrol

x 28 x 28

same population

x 56

So here is one mathematical thing we can do to try to answer this question. 
We can calculate the mean for each sample, and treat them as estimates of a 
population mean. Then we can look at those estimates and ask whether we 
think they are two estimates of one population mean, or whether they are two 
distinct estimates of two distinct population means.



Standard Error: How much do samples vary?
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How can we tell if two sample means are from the same population or not? 
Well, one logic is as follows: First, we expect sample means to vary even 
though they are from the same population. Each sample that we draw from a 
population will be different, so their means will be different. The question is 
how much will they vary?

population x 10,000 We call this the sampling distribution 
of the mean.

sample 1 x 20 = x̄1

sample 2 x 20

sample 3 x 20

… to 10,000 choose 20 …

We could, in principle, figure this out by collecting every possible sample from 
a population. If we calculated a mean for each one, those sample means would 
form a distribution. We could then calculate the variance and standard error of 
that distributions. That would tell us how much sample means vary when they 
come from the same population!

= x̄2

= x̄3

Its mean is the mean of the population 
that the samples come from.

Its standard deviation is called the 
standard error of the mean.



Plotting the sampling distribution of the mean
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population x 10,000

In the script parameters.statistics.r, I used 
R to generate a population of 10,000 
values with a mean of 0 and a standard 
deviation of 1. We’ve already seen this.

sample x 20 = x̄1
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I then took 1,000 samples from the 
population, each with 20 values. I 
calculated the mean for each one, and 
plotted that distribution. This is a 
simulation of the sampling distribution of 
the mean.
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The mean of the sampling distribution of 
the means is the population mean!



Estimating the standard error
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The standard deviation of the sampling 
distribution of the mean is called the 
standard error. We can calculate it from 
the simulated distribution using the 
standard deviation formula. The result for 
our simulation is plotted in blue to the 
right. (We typically don’t have this 
distribution in real life, so we can’t simply 
calculate it. We have to estimate it.)

To estimate standard error from a sample 
we use the formula: s/√n. In real life, you 
usually have one sample to do this. But we 
have 1000 samples in our simulation, so 
we can calculate 1000 estimates. To see 
how good they are, we can calculate the 
difference between each estimate and the 
empirical standard error calculated above. 
Here is the distribution of those 
differences. As you can see, the mean is 
very close to 0. They are good estimates!
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And now we can explain why we use standard 
error in our graphs
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OK, so now we know that the standard error is a measure of how much sample 
means from the same population will vary.

So now we can use the following logic. If two sample means differ by a lot 
relative to the standard error, then they are either from different populations, 
or something relatively rare has occurred (e.g., something rare like we drew 
samples from two ends of the sampling distribution of the mean).
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Cashing this logic out quantitatively is 
the domain of statistics (and we will 
learn some of this soon). But at least 
you can see why we use standard 
errors in our figure.

Since we are comparing means in our 
figures, the standard errors allow us to 
compare the size of the variability 
between means.

Again, the formula for the estimated standard error is standard deviation 
divided by the square root of the sample size, or s/√n. There is no built-in 
function for this in R, so it is good to memorize it.
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The most important lesson in stats: 
Statistics is a field of study, not a tool
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Statistics is its own field. There is a ton to learn, and more is being discovered 
every day. Statisticians have different philosophies, theories, tastes, etc. They 
can’t tell you the “correct” theory any more than we can tell them the “correct” 
theory of linguistics.

What we want to do is take this large and vibrant field, and convert it into a 
tool for us to use when we need it. This is a category mismatch.

Imagine if somebody tried to do that with linguistics. We would shake our 
heads and walk away…

But statistics is in a weird position, because other sciences do need the tools 
that they develop to get work done. And statistics wants to solve those 
problems for science. So we have to try to convert the field into a set of tools.

Statistics ≠



What you will run for (most) papers
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Obviously, I am not qualified to teach you the actual field of statistics. And 
there is no way to give you a complete understanding of the “tool version” of 
statistics that we use in experimental syntax in the time we have here. 

So here is my idea. I am going to start by showing you the R commands that 
you are going to run for (most) of your experimental syntax papers. Then we 
will work backwards to figure out exactly what information these commands 
are giving you.

library(lmerTest)

Load the lmerTest package

model.lmer=lmer(responseVariable~factor1*factor2 + (1+factor1*factor2|
subject) + (1|item), data=yourDataset)

Create a linear mixed effects model with your fixed factors (e.g., 
factor1 and factor2) and random factors for subjects and items.

Run the anova() function to derive F statistics and p-values using the 
Satterthwaite approximation for degrees of freedom.

anova(model.lmer)

1.

2.

3.



The results for our data
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If we run the following code in the script called linear.mixed.effects.models.r: 

wh.lmer = lmer(zscores~embeddedStructure*dependencyLength + (1|subject) 
+ (1|item), data=wh)

anova(wh.lmer)

And then use the summary() and anova() functions, we get the following 
results:

summary(wh.lmer)

In this section we want to try to understand what the model above is modeling, 
and what the information in the summaries is telling us.



Theories, models, and hypothesis tests
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Substantive 
Theories

Mathematical 
Models

Hypothesis 
Tests

As scientists, theories are what we really care about. 
Substantive theories are written in the units of that science; 
e.g., syntactic theories are written in terms of features, 
operations, tree-structures, etc.

We want to find evidence for our theories. But what counts 
as evidence? One possible answer (among many) is: (i) a 
successful theory will predict observable data, therefore (ii) 
we can use a measure of how well a theory predicts the 
data as evidence for/against a theory. If we adopt this view, 
we need to link our theories to observable data in a way 
that lets us quantify that relationship. In short, we need a 
mathematical model that relates our theory to the data. 
This opens up lots of doors for us. We can create metrics to 
evaluate how good a model is, and compare models for 
goodness. And we can use probability theory to answer 
questions like “how likely is this data given this theory?”, 
“how likely is this theory given this data?”.

Once we have models, and metrics for comparing them, we 
may want to formalize a criterion for choosing one model/
theory over another. In other words, a test.



Constructing a model for our theory
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The theory of 
wh-islands:

Our theory is that there is constraint on the extraction of 
wh-words out of embedded questions. 

Acceptability +Grammar +
memory parsing

world thought Noise

Task Effects

Our model: We already have a model in mind for our theory. We think 
that this constraint will affect acceptability. So we need a 
model of acceptability that has a spot for this constraint.

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

So all we need to do is translate this model of acceptability into a specific 
equation for our experiment. Here is what it is going to look like: 

Now let’s spend the next several slides building this equation so you can see 
where it came from.



This is a model to predict every judgment
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We have 224 judgments in our dataset. We want a model that can explain 
every one of them. We capture this with the i subscript:

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

This is shorthand for 1 to 224

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure1:dependency1 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure1:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency1 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…

acceptability224 = β0 + β1structure1 + β2dependency1 + β2structure1:dependency1 + ε224

Also notice that when we write out the individual equations for each judgment 
in our dataset, certain other numbers become concrete. The subscript on the 
structure and dependencies factors becomes a specific number (0 or 1), and 
the i subscript on the ε term takes the same value as the judgment.



Coding the variables
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The factors in our experiment are categorical (non-island/island, short/long).

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure1:dependency1 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure1:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency1 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…

Categorical variables can either be turned into 0 and 1 (treatment coding), or 
into -1 and 1 (effects coding). There is a difference between them that we will 
talk about in a few minutes. But for now, let’s choose 0 and 1, like so:

structure 
non-island = 0 
island = 1

dependency 
short = 0 
long = 1

Now look at the first four equations 
below. Can you see which condition 
each one represents?

The first is non-island because its structure is 0, and it is short because its 
dependency is also 0. The fourth is island because its structure is 1, and it is 
long because its dependency is 1.



What are the Betas?
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The betas in this equation are coefficients. They are the numbers that turn the 
0s and 1s into an actual effect on acceptability.

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure1:dependency1 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure1:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency1 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…

The idea is that you multiply the beta by the 0 or 1 in the factor to get an 
effect. So when the factor is 0, there is no effect. And when the factor is 1, you 
get an effect that is the same size as the beta.

It is important to note that each beta is constant. β1 is always β1. It doesn’t 
have another subscript that varies for each judgment (unlike the ε term). This 
is why each beta can be seen as an effect.

β1 is the effect of having island structure.

β2 is the effect of having a long dependency.



structure1:dependency1 is the violation
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The structure1:dependency1 term looks strange because it is the interaction 
term (the colon is a way of notating this). It is the special extra effect that 
occurs when the levels of the two factors are both 1. Basically, you multiply the 
two numbers together (0*0, 0*1, 1*0, or 1*1), and then multiply the result by 
β3 .

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure0:dependency0 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure0:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency0 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…
The interaction term does nothing for the first three conditions, because it is 
equivalent to a 0 then. In the fourth condition (1,1) it is a 1. In this condition, 
that 1 is multiplied by β3 to add to the effect. This means that β3 is the size of 
the violation effect (it is the DD score from earlier!). Note that this is only true 
with treatment (0,1) coding. The coefficients have different interpretations with 
different codings.

In our substantive theory, this mathematical term captures the effect of a 
violation. The island/long condition (1,1) is the only condition that meets the 
structural description of the island constraint.



ε is the error term
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If you just look at the betas and factors, you will quickly see that we can only 
generate 4 acceptability judgments: one for each condition in our experiment 
(00, 01, 10, 11). But we have 224 values that we need to model. And that is 
where the ε term comes in.

acceptability1 = β0 + β1structure0 + β2dependency0 + β3structure1:dependency1 + ε1

acceptability2 = β0 + β1structure0 + β2dependency1 + β3structure1:dependency1 + ε2

acceptability3 = β0 + β1structure1 + β2dependency0 + β3structure1:dependency1 + ε3

acceptability4 = β0 + β1structure1 + β2dependency1 + β3structure1:dependency1 + ε4

…

This may seem like a hack, but it is principled. The other parts of our model 
capture the things that we manipulated in our experiment. The error term 
captures all of the things that we couldn’t control: individual differences in the 
participants, differences in the items, effects of the task, etc. (And we will see 
later that we can model some of these things, at least a little bit).

The ε term is an error term. It is the difference between the value that the 
model predicts and the actual value of the judgment. This is why it varies in its 
subscript: we need a different ε term for each judgment.



We minimize the ε’s to estimate β’s
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Once you’ve specified your model (as we have here), the next step is to find 
the coefficients that make for a good model. 

Here is a toy example with 3 values and a simple model with only one beta:

One way to define “good” is to say that a good model will minimize the amount 
of stuff that is unexplained. Well, all of our unexplained stuff is captured by the 
ε terms, so this means that we want to minimize ε.

Let’s imagine we have three judgments 
to model (2,3,4). If we choose the value 
4 for the coefficient of β0, we get ε 
terms (-2, -1, 0), which we can square 
and sum to derive a sum of squares.

acci = εiβ0 +
2 = -24 +
3 = -14 +

4 = 04 +

SS=5

εi+
2 = -13 +
3 = 03 +

4 = 13 +

SS=2

Now, let’s imagine we have the same data, 
but we choose 3 for the coefficient of β0. 
Now we get smaller error terms, and 
consequently a smaller SS. This is a better 
model, because less is unexplained.

acci = β0
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Putting it all together
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You specify the model for R. That was the command we entered into the 
console. R will then find the best value of the coefficients for the data that you 
gave it. 

β0

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

β0+β2β0+β1

β0+β1+β2+β3

And you might recall that this is exactly the 2x2 logic that we discussed earlier.

εi: the distance 
between raw 
points and its 
condition mean



The R command
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Now that we understand our linear model, we can compare it to the R 
command that we ran at the beginning of this section. I will color parts so that 
you can see the correspondence:

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

lmer(zscores ~ embeddedStructure + dependencyLength + embeddedStructure:dependencyLength + 
(1|subject) + (1|item), data=wh)

You don’t need to specify the intercept (β0) in the command. R includes one by 
default (you can, however, tell it not to estimate an intercept if you want).

You don’t need to specify the error term (εi) in the command. Again, R includes 
one by default.

You will also notice that lmer() formula contains extra bits: (1|subject) and (1|
item). That is because the top model only has fixed effects. The (1|subject) 
and (1|item) terms are random effects. We will turn to those next.



The R command - a shortcut
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You may have noticed that the command I just showed you is not exactly the 
command in the script (or on the slide at the beginning of this section). That is 
because there is a shortcut in R for specifying two factors and an interaction:

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

When you want all three effects, you can use the * operator instead of a +. R 
will automatically expand this to all three components:

embeddedStructure 
dependencyLength 
embeddedStructure:dependencyLength

It is a nice shortcut that really saves you time if you have more than two 
factors, because they grow in squares (remember, a 2x2x2 will have 8 
components, and 2x2x2x2 will have 16).



Subject differences
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Let’s talk about the first term (1|subject). As the name suggests, this term 
captures differences between the subjects in our dataset. 

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

The plot at the right shows the 
mean rating of the 4 
experimental conditions for 
each subject. As you can see, 
there is quite a bit of variability.
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The (1|subject) term in the 
model tells R to estimate an 
intercept for each subject. This 
intercept is added to each 
subjects judgments to try to 
account for these differences.

Basically, instead of having these subject differences contaminate the effects of 
interest, or having these differences sit in an error term, this asks the model to 
estimate them. The code for this plot is in subject.item.differences.r.



Item differences
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The second term, (1|item), is similar. As the name suggests, this term 
captures differences between the items in our dataset. 

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

Once again, we can plot the 
means of each item to see their 
differences. Now, we expect 
differences between items 
based on their condition. But as 
you can see by the colors 
(colors = condition), there are 
differences between items 
within a single condition. 

This code asks R to estimate an intercept for each item, and add it whenever 
that item is being modeled. This makes sure that it isn’t contributing to the 
other (important) effects, or to the error term. The code for this plot is in 
subject.item.differences.r.
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Fixed factors vs Random factors
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Now, you may have noticed that our experimental factors look different from 
these subject and item factors in the R command. This is because the former 
are fixed factors and the latter are random factors.

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

fixed factors random factors

There are two common ways to define the difference between fixed and 
random factors. The first is operational, the second is mathematical:

Fixed factors are factors whose levels must be replicated exactly in order 
for a replication to count as a replication.

1. 

Fixed factors are factors whose levels exhaust the full range of possible 
level values (as they are defined in the experiment).

2. 

Random factors are factors whose levels will most likely not be replicated 
exactly in a replication of the experiment.

Random factors are factors whose levels do not exhaust the full range of 
possible level values.



Random intercepts and slopes
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One last note about random factors. So far, we’ve only specified random 
intercepts — one value for each subject and one value for each item. But we 
can also specify random slopes. A random slope specifies a different value 
based on the values of the fixed factors (remember in our linear model, it is 
the fixed factors that specify the slopes of the lines). 

lmer(zscores ~ embeddedStructure * dependencyLength + 
(1+embeddedStructure*dependencyLength|subject) + (1|item), data=wh)

The code for this looks complicated at first glance, but it isn’t. We simply copy 
the fixed factor structure into the random subject term:

The 1 in the code tells R to estimate an intercept for each subject. The next bit 
tells R to estimate three more random coefficients per subject: one for 
embeddedStructure, one for dependencyLength, and one for the interaction 
embeddedStructure:dependencyLength.

There is a “best practices” claim in the field (Barr et al. 2013) that you should 
specify the “maximal” random effects structure licensed by your design. These 
means specifying random slopes if your design allows it.

The problem is that maximal random effects structure sometimes don’t 
converge (R can’t find a solution). In that case, you need to use a simpler 
model like an intercepts-only model.



This is a linear mixed effects model
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A model that only has fixed effects is usually just called a linear model, though 
it is perhaps more correctly a linear fixed effects model.

lmer(zscores ~ embeddedStructure * dependencyLength + (1|subject) + (1|item), data=wh)

fixed factors random factors

A model that has both fixed factors and random factors is called a mixed 
model, so if it is linear, it is a linear mixed effects model.

In R, there is a package called lme4 that exists to model linear mixed effects 
models. You could load lme4 directly, and create the linear mixed effects model 
above. The function lmer() is a function from lme4.

We are using the package lmerTest to run our models. The lmerTest package 
calls lme4 directly (when you installed it, it also installed lme4). The reason we 
are using lmerTest is that lmerTest also includes some functions that let us 
calculate inferential statistics, like the F-statistic, and p-values. The lme4 
package doesn’t do that by itself.



The Random slopes model in our script
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Our script linear.mixed.effects.models.r contains the code for both an intercept-
only model and a random slopes model. You should try running them.

What you will find is that the intercept-only model runs fine, but the slopes 
model fails to converge. Like I said, this happens with random slopes models.

It turns out that the problem with the model is our coding of the factors. We 
used treatment coding, but for some reason (that I don’t understand), the 
coding is causing a problem for the model.

The model will converge with a different coding scheme called effect coding. 
This appears to be a pattern: many random slopes models will fail to converge 
with treatment coding, but succeed with effect coding.

So what should we do? Well, the coding doesn’t affect things like F-statistics, t-
statistics, and p-values. Those will be the same regardless of the coding 
scheme. So if that is all you care about, go ahead and change the coding.

What does change is the interpretation of the coefficients in the model. In the 
next few slides, I will show you this change in interpretation. But the bottom 
line is that if the interpretation is important to you, you either need to drop the 
random slopes, or translate the effect coding estimates into treatment coding 
estimates by hand.



Simple effects vs Main effects
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The first step to understanding the difference between treatment coding and 
effect coding is to understand the difference between simple effects and main 
effects:

ac
ce

pt
ab

ili
ty

short long

1

2
3

4

Simple effects are a difference between two conditions.

Typically, a simple effect is defined relative to one condition, the baseline 
condition. So if condition 1 were the baseline condition, we could define two 
simple effects:

The effect of 1 vs 2.

The effect of 1 vs 3.

The effect of 1 vs 4 is the sum of these 
two (in this example).



short 
mean

Simple effects vs Main effects
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The first step to understanding the difference between treatment coding and 
effect coding is to understand the difference between simple effects and main 
effects:

ac
ce

pt
ab

ili
ty 1

2

Main effects are the difference between the grand mean of all conditions and 
the average of one level across both levels of the other factor.

Again, in a 2x2 design we can define two main effects: embeddedStructure and 
dependencyLength. Each one goes in two directions (one positive, one 
negative)

The blue arrows are the main effect of 
dependencyLength (positive and 
negative change from the grand mean) 

The orange arrows are the main effect 
of embeddedStructure (positive and 
negative changed from the grand mean)

3

4

grand 
mean

short long

long 
mean

non-island 
mean

island 
mean

Each condition is a combination of the 
two main effects (in this example).
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Treatment coding reveals simple effects
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In treatment coding, each level is either 0 or 1. This is what we’ve been using 
so far. Treatment coding is great when one of your conditions can be 
considered a baseline in your theory.

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1) + β3structure1:dependency1 + εi

Treatment coding coefficients show you simple effects: the difference 
between the baseline condition and another condition. It works well for some 
designs, and less so for others (e.g., when you have no clear baseline).

0,0
0,1

1,1

1,0

β0

β0+β2β0+β1

β0+β1+β2+β3
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Effect coding reveals main effects

 236

In effect coding, the factors are given the values 1 or -1. This doesn’t change 
the model that we specify, but it changes the interpretation of the coefficients. 
Effects coding is helpful when there is no clear “baseline” condition.

β0

acceptabilityi = β0 + β1structure(1,-1) + β2dependency(1,-1) + β3structure1:dependency1 + εi

Effect coding coefficients show you main effects. But be careful. Main effects 
are not straightforward to interpret when there is an interaction (because the 
interaction contaminates them).

β0+β1

β0-β1
β0-β2

β0+β2

β0+β1+β2+β3

β0-β1+β2-β3

β0+β1-β2-β3

β0-β1-β2+β3

1,1
1,-1

-1,-1

-1,1



Choosing a contrast coding

 237

Contrast coding is primarily about interpreting the coefficients in your model. If 
you don’t care about trying to interpret those, then the contrast coding scheme 
will rarely matter. Contrast coding has no effect on statistics like F and t, and 
will not impact the p-values that F-tests and t-tests give you.

If you care about interpreting the coefficients, then you have to use your 
scientific knowledge to figure out which one is best for you.

Effect coding is best when you don’t have a clear baseline, or when you care 
about main effects (average effects of a factor). If you do care about main 
effects, remember that the present of an interaction makes it impossible to 
interpret main effects (because the interaction contaminates them).

Treatment coding is best if you have a clear baseline condition, and care about 
simple effects (differences from the baseline).

Finally, there are two times where it is better, mathematically, to use effect 
coding:

1. Some random slopes models won’t converge with treatment coding, but will 
converge with effect coding (like our random slope model).

2. If you are mixing categorical and continuous factors, treatment coding can 
introduce hescadasticity (variable variance). Effect coding does not.

t
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Let’s look at the coefficients 
of the intercept model (wh.lmer)
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Here is the output of 
summary(wh.lmer) for 
treatment coding:

Here is the output of 
summary(wh.lmer) for 
effect coding:

The β’s for the model are listed under Estimate. Go ahead and check these 
numbers against the graph of our condition means.

Just for fun, we can also look at the β’s from effect coding. As you can see, 
they are very different. You can check them against the β’s for treatment 
coding (you can translate between the two using the formulae in the previous 
slides, though it takes some effort).

Also notice there are some statistical things to the right in these readouts, such 
as t values and p-values… and notice that they don’t change based on coding!



Anova(wh.lmer) yields F-statistics and p-values
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Here is the output of 
anova(wh.lmer) for 
both coding types:

Although the summary() function had statistics in it (t statistics and p-values), 
I want to focus on the anova() function. This is the same information that you 
would get from a fixed effects ANOVA, which I think is useful for relating mixed 
effects models to standard linear models.

There are two pieces of information here that I want to explain in more detail: 
the F statistic and the p-value. These are the two pieces of information that 
anova() adds to our interpretation. With that, we will have (i) the graphs, (ii) 
the model and its estimates, (iii) the F statistic, and (iv) the p-value. Together, 
those 4 pieces of information provide a relatively comprehensive picture of our 
results.

Someday, it will be worth it for you to explore the Sum of Squares and df 
values, but for now, we can set them aside as simply part of the calculation of 
F’s and p’s respectively.



The F statistic is about evaluating models
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There are two common dimensions along which models are evaluated: their 
adequacy and their simplicity.

Adequacy: We want a model that minimizes error1.

We can measure simplicity with the number of parameters that are 
estimated from the model. A model that estimates more parameters is 
more complicated, and one that estimates fewer parameters is simpler.

We’ve already encountered this. We used sum of squares to evaluate the 
amount of error in a model. We chose the coefficients (the model) that 
minimized this error.

Simplicity: We want a model that estimates the fewest parameters2.

The intuition behind this is that models are supposed to teach us 
something. The more the model uses the data, the less the model itself is 
contributing.

The models we’ve been constructing are estimating 4 parameters from the 
data: β0, β1, β2, and β3



Degrees of Freedom as a measure of simplicity
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We can use degrees of freedom as a measure of simplicity.

Notice that df makes a natural metric for simplicity for three reasons:

df = number of data points - number of parameters estimated

df = n - k

It is based on the number of parameters estimated, which is our metric.

It captures the idea that a model that estimates 1 parameter to explain 100 
data points (df=99)  is better than a model that estimates 1 parameter to 
explain 10 (df=9).

2. 

1. 

The values of df work in an intuitive direction: higher df is better (simpler) 
and lower df is worse.

3. 



In practice, there is a tension between  
adequacy and simplicity
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Adequacy seeks to minimize error. Simplicity seeks to minimize the number of 
parameters that are estimated from the data.

Imagine that you have 224 data points, just like our data set. A model with 
224 parameters would predict the data with no error whatsoever because each 
parameter would simply be one of the data points. (This the old saying “the 
best model of the data is the data.”). This would have perfect adequacy.

But this model would also be the most complicated model that one can have 
for 224 data points. It would teach us nothing about the data. 

This tension is not a necessary truth. There could be a perfect model that 
predicts all of the data without having to look at the data first. But in practice, 
there is a tension between adequacy and simplicity.

To put this in terms of our metrics, this means there will be a tension between 
sum of squares and degrees of freedom.

So what we want is a way to balance this tension. We want a way to know if 
the df we are giving up for lower error is a good choice or not.



A transactional metaphor
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One way to think about this is with a metaphor. As a modeler, you want to 
eliminate error. You can do this by spending df. If you spend all of your df, you 
would have zero error. But you’d also have no df left. We have to assume that 
df is inherently valuable (you lose out on learning something) since you can 
spend it for stuff (lower error). So you only want to spend your df when it is a 
good value to do so.

Thinking about it this way, the question when comparing models is whether you 
should spend a df to decrease your error. The simple model keeps more df. The 
complex model spends it. The simple model has more error. The complex 
model has less error because it spent some df. Which one should you use?

Yi = εiβ0 +
2 = -24 +
3 = -14 +

4 = 04 +

SS=5

Yi = εiβ0 +
2 = -13 +
3 = 03 +

4 = 13 +

SS=2df=3 df=2

Simple: spends no df Complex: spent a df



A transactional metaphor
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When you are faced with the prospect of spending df, there are two questions 
you ask yourself:

1. How much (lower) error can I buy with my df?

2. How much error does df typically buy me?

In other words, you want to compare the value of your df (in this particular 
instance), with the value of your df in general. If the value here is more than 
the value in general, you should spend it. If it is less, you probably shouldn’t 
spend it, because that isn’t a good deal.

We can capture this with a ratio:

How much error can I buy with my df?

How much error does df typically buy me?

If the ratio is high, it is a good deal, so you spend your df. If the ratio is low, it 
is a bad deal, so you don’t spend your df.



The F ratio
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To cash out this intuition, all we need to do is calculate how much you can buy 
with your df, and then calculate the value you can expect for a df, and see if 
you are getting a good deal by spending the df.

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

The second equation takes the error of the complex model and divides it by the 
number of df in that model, giving you the value in error-elimination for each 
df. The complex model has the lowest error of the two models, so it is a good 
reference point for the average amount of error-elimination per df.

the amount of error you can 
buy with a df =

the amount of error df typically 
buys

= SScomplex/dfcomplex

Let’s take a moment to really look at these equations.

The first takes the difference in error between the models and divides it by the 
difference in df. So that is telling you how much error you can eliminate with 
the df that you spent moving from one model to the next. Ideally, you would 
only be moving by 1 df to keep things simple. 
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So now what we can do is take these two numbers, and create a ratio:

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex
F = 

If F stands for the ratio between the amount of error we can buy for a df and a 
typical value for a df, then we can interpret it as follows:

If F equals 1 or less, then we aren’t getting a good deal for our df. We are 
buying relatively little error by spending it. So we shouldn’t spend it. We should 
use the simpler model, which doesn’t spend the df.

If F equals more than 1, we are getting a good deal for our df. We are buying 
relatively large amounts of error-reduction by spending it. So we should spend 
it. We should use the more complex model (which spends the df) in order to 
eliminate the error (at a good value).

The F ratio is named after Ronald Fisher (1890-1962), who developed it, along 
with a lot of methods in 20th century inferential statistics.
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Here are our two models:

Yi = εiβ0 +
2 = -24 +
3 = -14 +

4 = 04 +

SS=5

Yi = εiβ0 +
2 = -13 +
3 = 03 +

4 = 13 +

SS=2df=3 df=2

simple complex

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex
F = = 

(5-2)/(3-2)

2/2
= 3 

So in this case the F ratio is 3, which says that we can buy three times more 
error-elimination for this df than we would typically expect to get. So that is a 
good deal, and we should use that df. So the complex model is better by this 
metric (the F ratio).
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Here is the output of 
anova(wh.lmer) for 
both coding types:

Now let’s look again at the output of the anova() function (which calculates F’s) 
for our example data. 

The first F in the list is for the factor embeddedStructure. This F is comparing 
two models:

acceptabilityi = β0 + β1structure(0,1)

acceptabilityi = β0simple:

complex:

The resulting F ratio is 146:1, so yes, the structure factor is pretty good value 
for the df spent.
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Here is the output of 
anova(wh.lmer) for 
both coding types:

The second F in the results is for dependencyLength. Again, this is comparing 
two models:

acceptabilityi = β0 + β2dependency(0,1)

acceptabilityi = β0simple:

complex:

The resulting F ratio is 186:1, so yes, the dependency factor is pretty good 
value for the df spent.
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Here is the output of 
anova(wh.lmer) for 
both coding types:

The final F is for the interaction of the two factors. This is still comparing two 
models, but in this case, the simpler model is the model with the two main 
effects present with no interaction (+), and the complex model adds the 
interaction (*):

acceptabilityi = β0 + β1structure(0,1) * β2dependency(0,1)

acceptabilityi = β0 + β1structure(0,1) + β2dependency(0,1)simple:

complex:

The resulting F ratio is 64:1, which again, is a good value, and suggests that it 
was a good idea to add the interaction term.
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Let’s be clear: model construction and comparison is its own exercise. Nothing 
we have done so far has been a formalization of a hypothesis test. We’ve just 
been talking about how to construct models, and how to compare two models 
that we’ve constructed using information that seems useful.

I want to stress the fact that you can be interested in model construction and 
model comparison for its own purposes. Models are a tool that allows you to 
better understand your research question. You can see exactly how different 
factors contribute to the dependent variable.

This distinction between model construction/comparison and hypothesis testing 
is why lme4 doesn’t come with p-values. It is a tool for model construction and 
comparison, while p-values are a tool for hypothesis testing.

That being said, I wouldn’t make you learn about F ratios if they couldn’t be 
used for hypothesis testing. And lmerTest, which as the name suggestions is 
designed to turn linear mixed effects models into hypothesis tests, wouldn’t 
give you the F’s if they weren’t useful for tests. So let’s do that now.

Also, there are other metrics for model evaluation and comparison that you 
should explore: adjusted R2, BIC, AIC, etc.
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When people think of hypothesis testing, the first approach that comes to mind 
is Null Hypothesis Significance Testing.

NHST was not the first approach to statistics that was developed (Bayes 
Theorem is from 1763, Karl Pearson developed many components of statistics 
in the 1890s and 1900s, Gosset developed the t-test in 1908). NHST is also 
not the currently ascendant approach (Bayesian statistics are ascending).

But NHST dominated 20th century statistics (both in theory and practice) so it 
is still a standard approach in experimental psychology, and it is very much 
necessary for reading papers published in the last 75 years.

Pedagogically speaking, I am not sure if it is better to begin with NHST, and 
then move to Bayes, or better to start with Bayes, and then move to NHST. For 
now, I think it is safer to start with NHST, and move to Bayes if you are 
interested.

That way, even if you don’t have the time to look into Bayes in detail, you still 
have the NHST tools necessary to (i) publish papers, and (ii) read existing 
papers. You can cross the Bayes bridge if the field ever comes to it.
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It turns out that there are two major approaches to NHST. They are very 
similar in mathematical appearance, so it is easy to think that they are 
identical. But they differ philosophically (and in some details), so it is 
important to keep them separated.

Ronald Fisher was the first person to try to 
wrangle the growing field of statistics into a 
unified approach to hypothesis testing. His 
NHST was the first attempt, and may still be 
the closest to the way scientists think about 
NHST. We’ll start with the Fisher approach.

Jerzy Neyman 
(1894-1981)

Egon Pearson 
(1895-1980)

Ronald A. Fisher 
(1890-1962)

Neyman and Pearson were fans of Fisher’s 
work, but thought there were some 
deficiencies in his approach. So they tried to 
rectify that. It turns out that they simply had 
a different conception of probability and 
hypothesis testing. We’ll talk about the 
Neyman-Pearson approach second. 
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Under Fisher’s NHST, there is only one hypothesis under consideration. Perhaps 
ironically, it is the most uninteresting hypothesis you could consider. It is called 
the null hypothesis, or H0.

The null hypothesis. This states that there is no effect in your data 
(e.g., no difference between conditions, no interaction term, etc).

H0:

For Fisher’s NHST, the goal of an experiment is to disprove the null 
hypothesis.

“Every experiment may be said to exist only in order to give the facts a 
chance of disproving the null hypothesis.” - Fisher (1966)

To do this, Fisher’s NHST calculates the probability of the observed data under 
the assumption that the null hypothesis is true, or p(data|null hypothesis).

If p(data|null hypothesis), called the p-value, is low, then you can conclude 
either: (i) the null hypothesis is incorrect, or (ii) a rare event occurred.

This leads to Fisher’s disjunction:
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There are two steps to a statistical test under Fisher’s NHST approach:

Step 1: Calculate P(data | null hypothesis) 

Step 2: Make an inference about the null hypothesis

For Fisher, p(data | H0) is a measure of the strength of evidence against the 
null hypothesis. If it is low, that is either strong evidence against the null 
hypothesis, or evidence that something really rare occurred.

data1 
data2 
data3 
…

Data 
Generator

(assumes H0)

One way to think about this is that you 
are creating a data generating device 
that assumes the null hypothesis, and 
generates all possible data sets.

P(data | H0) =
observed data
generated data

Then you use the distribution of 
generated data to calculate the 
probability of the observed data
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Once we have the logic of NHST, we can go back to the results that R and 
lmerTest gave us, and interpret those results. (Sure, it would be nice to be able 
to calculate the results for ourselves, but R does this for us.)

Here is the output of 
anova(wh.lmer) for 
both coding types:

The first thing to note is that in this case, our p-values are in scientific 
notation. This is because they are really small:

p = .00000000000000022
p = .00000000000000022
p = .00000000000009048

structure
length
interaction

These are incredibly small, so under Fisher’s logic, we say that there is either 
very strong evidence that the null hypothesis is false, or something very rare 
occurred (i.e., the null hypothesis is true, but we got a result at the very end of 
the distribution of possible null hypothesis results).
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Once we have the logic of NHST, we can go back to the results that R and 
lmerTest gave us, and interpret those results. (Sure, it would be nice to be able 
to calculate the results for ourselves, but R does this for us.)

Here is the output of 
anova(wh.lmer) for 
both coding types:

The second thing to note is that these p-values are based on the F statistics 
that lmerTest calculated for each effect.

F1 
F2 
F3 
…

Data 
Generator

(assumes H0)

In principle, you can use any summary 
statistic you want (and you may know that 
there are many summary statistics in the 
literature). You could even use the sample 
mean.

The F is a nice statistic to use because it gives us even more information than 
just a p-value — remember, it tells us how much value we got for that df.
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Once we have the logic of NHST, we can go back to the results that R and 
lmerTest gave us, and interpret those results. (Sure, it would be nice to be able 
to calculate the results for ourselves, but R does this for us.)

Here is the output of 
anova(wh.lmer) for 
both coding types:

Finally, note that the readout puts asterisks next to the p-values to tell you if 
they are below .05, .01, etc. 

We will talk about this more later, but in a nutshell, the Neyman-Pearson 
approach asks whether the p-value is below a pre-specified threshold. The 
exact number doesn’t matter, it is just whether it is below the threshold. These 
asterisks implement several common thresholds.

It is tempting to think of this as just a nice way to quickly visualize the results, 
but there is something much deeper going on here. The precise p-value is 
necessary for the Fisher approach to NHST, the asterisks are there for the 
Neyman-Pearson approach.
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But if you are going to use p-values, you need to be clear about what the p-
value is telling you. It is the probability of obtaining the observed results, or 
results more extreme, under the data generation model of the null 
hypothesis). 

Here are some other bits of information you may want to know. Unfortunately, 
p-values are not these other things:

1. The probability of the null hypothesis being true: p(H0 | data)

2. The probability of your hypothesis of interest being true: p(H1 | data)

3. The probability of incorrectly rejecting the null hypothesis (a false rejection).

4. The probability that you can replicate your results with another experiment.

The problem is that plenty of people think that p-values give these bits of 
information. That is false. There are literally dozens of papers out there trying 
to correct these misconceptions. 

First and foremost, p-values are only one small piece of information. You also 
have your graphs, the model coefficients, and evaluation statistics like F.
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Though the logic is enough to interpret the results that R and lmerTest give us, 
you may want to study the math that NHST approaches use to generate the 
reference distribution for the null hypothesis. It will give you the flexibility to 
run (and even create) your own analyses, and it will help you understand the 
hypothesis tests at a deeper level. 

Randomization methods. 

Most people imagine analytic methods when they think of stats. The idea 
here is that there are test statistics whose distribution is invariant under 
certain assumptions. We can use these known distributions to calculate p-
values analytically (with an equation).

There are basically three approaches to generating the null reference 
distribution in NHST. I will review each briefly in the next few slides:

1.

Bootstrap methods.2.

Analytic methods.3.

The basic idea is to take your observed data points, and randomize the 
condition labels that you attach to them.

The basic idea is to use your sample as a population, and sample from it to 
generate a (population-based) reference distribution.
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Let’s use an example to demonstrate how to generate a reference distribution 
for the null hypothesis using randomization. Let’s focus on two conditions for 
simplicity:

What do you think that Jack stole __?

What do you wonder whether Jack stole __?*

control:

target:

Here is the critical insight of randomization tests: Even though I have labeled 
these observations control and target, under the null hypothesis they are all 
just from the same label, null. So, this assignment of labels is arbitrary under 
the null hypothesis. And if the assignment is arbitrary, then I should be able to 
randomly re-arrange the labels.

Randomly assign labels 
to these points because 
these labels are arbitrary 
under the null hypothesis.
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Start with the 
full data set

Then we repeat the process. With small samples, we can create every possible 
combination of labels, and have a complete distribution of possible test 
statistics. With large samples, this isn’t possible, so we collect a large number 
of randomizations, like 10,000, and approximate the distribution.

Randomly 
assign labels

Calculate the 
test statistic

x̄c = 1

x̄t = .3
x̄c-x̄t = .7

… to completion or 10,000

x̄c-x̄t = -.5

x̄c-x̄t = .3

We then collect all of the 
test statistics together to 
form a reference 
distribution under the 
null hypothesis.

See randomization.r for 
code to do this!
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Now that we have a reference distribution, we ask the following question: What 
is the probability of obtaining the observed result, or one more extreme, given 
this reference distribution?

We say “or one more extreme” for two reasons. First, we can’t just ask about 
one value because our response scale is continuous (most likely, the probability 
of one value is 1/the number of values in our distribution). Second, if we have 
to define a bin, “more extreme” results make sense, because those are also 
results that would be less likely under the null hypothesis.

p =
observations equal, or more extreme + 1

randomly sampled randomizations + 1

p =
observations equal, or more extreme

number of randomizations

If you calculated all possible randomizations, then you can use this formula for 
p-values:

If you randomly sampled the randomizations, then the above will 
underestimate the true p-value (because your sampled distribution is missing 
some extreme values). You can correct for this by adding 1 to the numerator 
and denominator: 
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Randomization tests are incredibly powerful and incredibly flexible. I would say 
that if you want to do pure NHST, without mixed effects, then randomization 
tests should be your first choice.

Even Fisher admitted that randomization tests should be the gold standard for 
NHST. But in the 1930s, computers weren't accessible enough to make 
randomization tests feasible for anything but very small experiments. So he 
developed analytic methods for larger experiments. But he said that the 
analytic methods are only valid insofar as they give approximately the same 
result as randomization methods.

The best reference for randomization tests is Eddington and 
Onghena (now 2007), Randomization Tests. Be warned that it is 
written like a reference, and not like a textbook. But if you need to 
know something about randomization tests, it is fantastic.

For a textbook experience, I like Zieffler, Harring, and Long’s (2011) 
Comparing Groups: Randomization and Bootstrap Methods 
using R. It is an introduction to NHST using Randomization and 
Bootstrap methods, which is a nice idea in the computer age.
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If you want to make causal inferences about whether your treatment had an 
effect in your sample,  you have to randomly assign units to treatments. 

If you can’t randomly assign your units to treatments, you can’t be sure that 
your treatment is causing the effect. The effect could be caused by properties 
of the two groups.

If you want to make inferences about populations, you have to randomly 
sample the units from the population.

If you can’t randomly sample your units, you can’t be sure that your results 
hold for the entire population. You can still make inferences about your 
sample, which is generally all you want to do anyway, but you can’t claim that 
your treatment will have an effect in a population.

As the name implies, randomization tests assume that you randomly assigned 
units to treatments. And because of this assumption, randomization tests allow 
you to make causal inferences about the effect of your treatment in the 
sample.

If you want to make claims about a population, then you can’t use 
randomization tests. You have to add the idea of sampling from a population to 
the test. What you want are bootstrap methods.
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Randomly sample your participants (or other experimental units) 
when running your experiment. This is necessary if you want to 
make inferences about population parameters from the samples.

Step 1:

Choose a test statistic. Usually this is the mean, but it could be 
one of the other possible statistics.

Step 2:

Define the null hypothesis as no difference between population 
parameters, e.g., µA - µB = 0

Step 3:

Let’s assume that we did randomly sample (not true, but let’s assume it for 
demonstration purposes, and let’s use means/mean differences for our test 
statistic.

If you are running a bootstrap, I assume you are interested in making 
inferences about populations. Here are the first three steps:
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Define the single population under the null hypothesis.Step 4:

This is our first tricky step. We don’t have an empirical measurement of our 
population. If we did, we wouldn’t need to sample from it! So what do we do?

Well, we can use our experimental sample as an approximation because it was 
randomly sampled.

Under the null hypothesis, we only have one population, so that means we can 
combine all of the values from both conditions together into one group:

+
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Calculate the reference distribution for your test statistic under 
the null hypothesis (one population).

Step 5:

This is our next tricky step. We want to use our sample as an approximation of 
our distribution. This means randomly sampling from our sample in order to 
derive a reference distribution.

In this case we want to randomly sample with replacement, which means that 
after each participant is selected, we replace it so that it could be selected 
again in the very same sample! Up until now, we have been sampling without 
replacement, which means that each participant could only be selected once 
per sample.

with replacement without replacement

{1,2,3}, choose 2 {1,2,3}, choose 2
{1,2} 
{1,3} 
{2,3}

{1,2} 
{1,3} 
{2,3}

{1,1} 
{2,2} 
{3,3}

We do this to approximate a population that is much larger than our sample 
(possibly infinitely large). Values will still be chosen according to their 
probability, but they won’t artificially disappear because our sample size is 
small.
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Calculate the reference distribution for your test statistic under 
the null hypothesis (one population).

Step 5:

So here is what we do:

First, we randomly sample with replacement two samples from our observed 
sample. We call these bootstrap replicates. They are replicates because they 
are other possible samples that we could have obtained in our experiment. 
They are bootstrap replicates because this procedure is called the bootstrap 
method. 

Second, we calculate the mean for each bootstrap replicate, and then calculate 
the mean difference.

Third, we save this mean difference (as the first value in our reference 
distribution).

Then we repeat this process a large number of times (e.g., 10,000) to derive a 
reference distribution called the bootstrap distribution. 
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Calculate the probability of your observed statistic (e.g., 
difference between means in your experiment), or one more 
extreme, from your reference distribution.

Step 6:

Now that we have a reference distribution that approximates the exact 
distribution pretty well, all we need to do is use our old formula (plus 
correction) to calculate the p-value:

p =
outcomes equal, or more extreme + 1

randomly sampled outcomes + 1

What we’ve just done is called a non-parametric bootstrap, because we 
didn’t make any assumptions about the parameters of the population. Instead, 
we used our (combined) sample as a proxy for the population.

A parametric test is one in which the parameters of the 
population are known (or assumed)

Parametric:

A non-parametric test is one in which the parameters of 
the population are unknown (or not assumed)

Non-parametric:
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The parametric bootstrap has the same steps as the non-parametric bootstrap. 
The only difference is in the population that the replicates are drawn from!

1. Define a population to draw the replicates from:

non-parametric: the sample 
is used as a proxy

parametric: a probability model for 
the population with certain parameters

2. Sample with replacement from the population to derive a reference 
distribution.

3. Calculate the probability of the data given the reference set.
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The only challenge in the parametric bootstrap is picking the correct probability 
model for your population. How do you know what parameters to pick?

In principle, you could pick any probability model that you think underlies the 
generation of your data. In practice, if you are ever doing one of these 
analyses, you will probably choose a normal distribution.

The normal distribution is the “bell curve”. It has 
some useful properties that make it a good choice 
for many applications:

It is the probability model underlying a large 
number of phenomena.

1.

It can be completely parameterized with 2 
parameters: the mean and the standard 
deviation using the following equation:

2.
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The only problem with the normal distribution is that it is a family of 
distributions. Every member of the family follows the equation, but they each 
use a different value for the mean and standard deviation:

µ=0 
σ=1

µ=3 
σ=2

µ=-2 
σ=3

Believe it or not, these are 
all normal distributions.

The difference is that each 
one has a different mean 
(so a different location on 
the x-axis), and a different 
standard deviation (a 
different width on the x-
axis, which also means a 
different height). 
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Instead of trying to guess the mean and standard deviation, you can use the 
standard normal distribution, which is just a normal distribution with a 
mean of 0, and a standard deviation of 1. It is easy to work with.

0.0

0.1

0.2

0.3

0.4

-6 -3 0 3 6
values

de
ns
ity



Converting our data to the standard normal 
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It is easy enough to use the standard normal distribution as our probability 
model for the population. R even gives us the built-in function rnorm(), which 
randomly samples from the standard normal distribution by default.

The problem is that our observed values are not on the same scale (the mean 
of the combined group of both of our condition is not 0). So we won’t be able 
to compare our observed values to the reference distribution.

This is actually easy to fix. We can simply convert the values in our combined 
group into the standard normal distribution scale using our old friend the  
z-score transformation.

In this case, we are applying the z-score transformation to our combined data 
set (the thing that represents the full population), not each participant. That’s 
the only difference. It is the same equation:

Z =
X - mean

standard deviation

The result is that each value will be equal to its distance from the mean (as if 
the mean were 0), and that distance will be measured in units equal to the 
standard deviation. So our observed values will be on the same scale as our 
reference distribution!
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First, we randomly sample with replacement two samples from our probability 
model. We call these bootstrap replicates. They are replicates because they 
are other possible samples that we could have obtained in our experiment. 
They are bootstrap replicates because this procedure is called the bootstrap 
method. 

Second, we calculate the mean for each bootstrap replicate, and then calculate 
the mean difference.

Third, we save this mean difference (as the first value in our reference 
distribution).

Then we repeat this process a large number of times (e.g., 10,000) to derive a 
reference distribution called the bootstrap distribution. 

Now that we’ve decided on a probability function, and re-scaled our observed 
data, we simply carry out the bootstrap procedure like before:

Finally we calculate a p-value using the standard formula (and correction).

The script bootstrap.r contains code to run both a non-parametric and 
parametric bootstrap.
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Because randomization and bootstrap methods are so computationally 
intensive, early 20th century statisticians could not use them. These people 
were smart. They developed analytic methods that give approximately the 
same result as randomization and bootstrap methods. And then shared them 
with the world.

The basic idea of analytic methods is that we need test statistics that have 
known, or easily calculable, reference distributions. We can’t use the mean, 
because the distribution of the mean will vary based on the experiment (the 
data type, the design, etc). We need statistics that are relatively invariant, so 
that we can calculate the distribution once, and use it for every experiment in 
all of the different areas of science.

There are both parametric and non-parametric analytic methods, just like 
there are both parametric and non-parametric bootstrap methods. And there 
are a ton of different test statistics with different properties that are suited for 
different experimental situations.

For pedagogical reasons, I am going to focus on the F statistic.
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The error terms in the linear model are normally 
distributed (which will be true if the population(s) of 
participants are normally distributed)

The observed responses are independent (in repeated-
measures designs this means the pairs of responses 
are independent)

The variances of the samples are equal 
(homogeneous). This is always true when the null 
hypothesis is true, but also must be true when the null 
hypothesis is false.

Normally 
distributed errors:

Independence:

Homogeneity of 
variance:

When people talk about parametric statistics, there is a typical cluster of three 
assumptions that they usually have in mind. The F statistic is parametric in this 
way - its distribution is predictable only if these assumptions are met:

Participants are randomly sampled from a populationRandom Sampling:

There is a fourth assumption that typically accompanies these four under the 
rubric “parametric”, but it is not about the distribution of the statistic. It is 
about the inferences that can be drawn from it.
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The distribution of the F statistic (called the Fisher-Snedecor distribution), is 
useful for analytic methods because it does not vary based on things like the 
mean or scale of the data. Instead, it is completely determine by two numbers, 
typically called df1 and df2, or dfnum and dfden, because of their relationships to 
the degrees of freedom in our calculation of F. 

If you want the equation for the 
probability density function, you 
can see it on the wikipedia page for 
the F distribution: https://
en.wikipedia.org/wiki/F-distribution. 
It is fairly complicated, so I won’t 
reproduce it here. But I will show 
you how the distribution varies with 
different dfs. In a 2x2, our df will be 
1, as in the left figure. I include the 
right just to show you the full range 
of the F distribution. These plots are 
in f.distribution.r.

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex
F = 

dfnum = dfsimple - dfcomplex 

dfden = dfcomplex 
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The term ANOVA is just another way of saying F-test. It is actually the primary 
way, because most people think about tests, not about the statistics that they 
are using in that test. 

ANOVA stands for ANalysis Of VAriance. What you should be thinking at this 
point is that we have never once discussed analyzing variance, so how is it 
that the F-tests that we have been discussing are analyses of variance?  

Well, it turns out that there is a completely different, but equally valid, way of 
thinking about the F-ratio. Instead of a measure of error minimization per 
degrees of freedom, you can think of it as a ratio between two estimates of the 
population variance: the numerator is an estimate based on the sample 
means, and the denominator is an estimate based on the sample variance. 
(Don’t worry, this will make more sense soon!)

estimated σ2, based on sample means
estimated σ2, based on the two sample variances

F =

This is mathematically equivalent to the model comparison approach that I 
taught you, but conceptually different. I prefer model comparison; but most 
stats courses prefer the analysis of variance method. So now I will connect 
them for you!



Analysis of Variance
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The first thing to realize about what we’ve been doing so far is that we’ve seen 
two ways to use samples to estimate the variance of a population. 

Use the variance of the sample as an estimate

s2 =
Σ(Yi - Ȳ)2

Option 1:

Recall from our first lecture that the variance of a sample (s2)can be used as 
an unbiased estimate of the population variance (σ2) if we use (n-1) in the 
calculation: 

(n-1)
= estimate of σ2

In the case of an independent measures ANOVA, you actually have two 
samples! So you can come up with an even better estimate of σ2 by averaging 
the two estimates! (If one estimate is good, the average of two estimates will 
be better!) Here is a formula to let you do that for two samples:

(n1-1)s12 + (n2-1)s22

(n1-1) + (n2-1)
mean s2 =



Analysis of Variance
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The first thing to realize about what we’ve been doing so far is that we’ve seen 
two ways to use samples to estimate the variance of a population. 

Use the variance of two (or more) meansOption 2:

Now, this estimate you probably didn’t even notice. The basic idea has two 
steps.

First, the variance of two (or more) means provides an estimate of the 
variance of the sampling distribution of means (the variability in all of the 
means that you could get if you repeatedly sampled from a population: σȲ2).

estimate of σȲ2 = 
Σ(Ȳj - Ȳ)2

(j-1)

Second, the variance of sampling means (σȲ2) can be used to calculate the 
population mean:

σȲ2 =
σ2

n therefore, σ2 = n(σȲ2)



Two estimates of population variance (σ2)
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Based on sample means 
aka numerator 
aka between groups

Based on sample variance 
aka denominator 
aka within groups
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We call the estimated variance based on the sample variances (Option 1) the 
Within Groups Mean Squared Error, or MSW.

The reason we call it this is because “mean squared error” is just another way 
to say variance; and it was an estimate that was calculated by averaging the 
variance of the two groups (within the groups).

Assuming that variances are equal in both groups regardless of the hypothesis 
(null or alternative), which is an important assumption of ANOVAs, the MSW 
will not change based on whether the null hypothesis is true or false! 

We call the estimated variance based on the sample means (Option 2) the 
Between Groups Mean Squared Error, or MSB. This is because it used the 
variance between the means of the two groups to estimate the variance (mean 
squared error) of the population.

Now here is the neat thing. The MSB will absolutely change depending on 
whether the null hypothesis is true or false. If the null hypothesis is true, then 
this estimate will be approximately the same as MSEWG. But if the the null 
hypothesis is false, this estimate will be larger. This is because the two means 
don’t come from the same population, so they will likely be more different than 
two means that come from the same population.



Within groups variance does not change based 
on the hypothesis
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This is also the F-ratio!
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And now, yet another mind blowing moment:

F =
MSB

MSW

Yup, the ratio between the estimate of the population variance based on mean 
variation and the estimate of the population variance based on sample 
variances is identical to the F-ratio that we’ve been talking about!

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex
F = 

We call the way we’ve been talking about the F-ratio the model comparison 
approach, because it emphasizes the comparison of two models. We call the 
new approach the analysis of variance approach, hence ANOVA. They are 
mathematically equivalent (I will leave it to you to work out the math), and 
they are equally valid for defining the F statistic for a test. Although I prefer 
using the model comparison approach, both are equally valid ways of thinking 
about F-tests.

Since MSB gets larger when the null hypothesis 
is false, F will be larger (and will be close to 1 
when the null is true).



And just FYI, F = t2
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We haven’t looked at t-tests at all in this class, but some of you may have 
heard of them. A t-test is a way of comparing one mean to 0, or two means to 
each other, using the t-statistic. What you may find interesting is that F and t 
are related. F is t2.

We can see this easily with 
our toy example from 
earlier. Let’s calculate both 
an F for these two models, 
and a t for the complex 
model versus the constant 
in the simple model.

Yi = εiβ0X0-i +
2 = -24 +
3 = -14 +

4 = 04 +

SS=5

Yi = εiβ0X0-i +
2 = -13 +
3 = 03 +

4 = 13 +

SS=2df=3 df=2

simple complex

t =
Ȳ - µ

s2

n

(SSsimple - SScomplex)/(dfsimple - dfcomplex)

SScomplex/dfcomplex
F = = 

(5-2)/(3-2)

2/2
= 3 

= 
3 - 4

1
3

= -1.732051



Analytic methods: more information
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This is probably the best book on the model comparison 
approach to F-tests there is. It is also a beast of a book. But 
well worth it if you really want to understand F-tests. There is 
no R here. This is math.

Designing Experiments and Analyzing Data 
Maxwell and Delaney

This book is a comprehensive introduction to (analytic) 
statistics, and it is a great introduction to R (and plotting with 
R). It is very readable (and at times, amusing), and covers all 
of the things that are covered in fundamental statistics courses.

Discovering Statistics Using R 
Field, Miles, and Field
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Jerzy Neyman 
(1894-1981)

Egon Pearson 
(1895-1980)

Neyman and Pearson were fans 
of Fisher’s work, but they 
thought there was a logical 
problem with his approach. 

While it is all well and good to 
say that the p-value is a 
measure of strength of evidence 
against the null hypothesis, at 
some point you have to make a 
decision to reject the null 
hypothesis, or not.

Fisher himself had suggested that p<.05 was a good criterion for deciding 
whether to reject the null hypothesis or not. 

Neyman and Pearson decided to take this one step further, and really work out 
what it would mean to base a statistical theory on the idea of decisions to 
reject the null hypothesis.



Going further: Neyman-Pearson NHST
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There are two states of the world: the null hypothesis is either 
true or false.

Tenet 1:

You can never know if the null hypothesis is true or false.Tenet 2:

This actually follows from the philosophy of science and the 
problem of induction.

In the absence of certainty about the state of the world, all you can do is 
make a decision about how to proceed based on the results of your 
experiment. You can choose to reject the null hypothesis, or you can choose 
not to reject the null hypothesis.

This sets up four possibilities: two states of the world and two decisions that 
you could make.

Type I Error Correct Action

Correct Action Type II Error

State of the World

D
ec

is
io

n

H0 True H0 False

Reject H0

Accept H0
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Type I Error Correct Action

Correct Action Type II Error

State of the World
D

ec
is

io
n

H0 True H0 False

Reject H0

Accept H0

This is when the null hypothesis is true, but you mistakenly 
reject it.

Type I Error: 

This is when the null hypothesis is false, but you mistakenly 
fail to reject it.

Type II Error: 

Take a moment to really think about what these two errors are. What do you 
think about the relative importance of each one?



Going further: Neyman-Pearson NHST
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Neyman-Pearson, and many others, have suggested that Type I errors are 
more damaging than Type II errors.

The basic idea is that science is focused on rejecting the null hypothesis, not 
accepting it. (To publish a paper, you have to reject the null hypothesis.) So a 
Type I error would mean making a decision (or publishing a result) that 
misleads science.

Type II errors are also important, but not equally so. Failing to reject the null 
hypothesis is simply a failure to advance science. It doesn’t (necessarily) 
mislead the way that a Type I error does.

Type I Error Correct Action

Correct Action Type II Error

State of the World
D

ec
is

io
n

H0 True H0 False

Reject H0

Accept H0
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This is when the null hypothesis is true, but you mistakenly 
reject it.

Type I Error: 

If you accept the importance of Type I errors, then you will want to keep the 
rate of Type I errors as low as possible.

Under the Neyman-Pearson approach, which emphasizes the decision aspect of 
science, you can control your Type I error rate by always using the same 
criterion for your decisions. 

alpha level / 
alpha criterion:

This is the criterion that you use to make your decision. By 
keeping it constant, you keep the number of Type I errors 
that you will make constant too. For example, if you set 
your alpha level to .05, then you only decide to reject the 
null hypothesis if your p-value is less than .05. Similarly, if 
you set your alpha level to .01, then you only decide to 
reject the null hypothesis if your p-value is less than .01.

Take a moment to think about how setting an alpha level will control your Type 
I error rate.



Going further: Neyman-Pearson NHST
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There is an important relationship between your alpha level and the number of 
Type I errors that you will make:

If you apply the same alpha level consistently over the long-run, 
your Type I error rate will be less than or equal to your alpha level.

Here’s a thought experiment:

1. Imagine that the null hypothesis is TRUE. 

2. Now, imagine that you run an experiment and derive a test statistic.

3. Next, imagine that you run a second experiment and derive a test statistic.

4. And then, imagine that you ran the experiment 10,000 times…

5. This should be familiar. You just derived a reference distribution of the test  
    statistic under the null hypothesis!

6. Now set your alpha level (decision criterion) to .05. Given the distribution  
    you just derived, how often will you derive a p-value less than .05? In short,  
    how often would you make a Type I Error?

We can run this in R. There is code for it in alpha.demonstration.r.
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Here is how the alpha level works:

Imagine that the null hypothesis is true 
for your phenomenon. 

1.

And let’s run an experiment testing this 
difference 10,000 times, saving the 
statistic each time.

2.

real world 
distribution of statsThe result will be a distribution of real-

world test statistics, obtained from 
experiments where the null hypothesis is 
true.

3.
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real world 
distributionBut also notice that this distribution will be 

nearly identical to the hypothetical null 
distribution for your test statistic (because 
the null hypothesis was true in the real 
world). This will be important later.

4.
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Now let’s choose a threshold to cut the 
distribution into two decisions: non-
significant and significant

5. null distribution

Remember we call this the alpha level.
alpha level

reject the nullaccept the null

Also remember that this is a criterion 
chosen based on the null distribution 
(because this is a null hypothesis test).
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Now we apply this threshold to each of our 
10,000 experiments, one at a time as we 
run them. 

6. real world experiments

So for each experiment, we can label it as 
a correct decision (accept the null) or a 
false positive (reject the null).

dividing line

false positivescorrect decisions
And to make life easier, we can visualize 
this as a distribution of results, with a 
dividing line between the two types.
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Now here is the final question. How many 
false positives happened in our 10,000 
experiments?

7.

null distribution

We could count them. But what I want to 
show you is the consequence of the 
identity that happened back in step 4.

alpha level

reject the nullaccept the null
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Because our real world distribution is identical to the null distribution (the 
null hypothesis is true), our alpha level is identical to the dividing line 
between correct decisions and false positives:

=

In this way, the alpha level is the maximum type I error rate (because 
the maximum number of errors occurs when the null is true).
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It is important to understand the relationship between these concepts:

This is when the null hypothesis is true, but you mistakenly 
reject it.

Type I Error: 

The probability of obtaining a test statistic equal to, or more 
extreme than, the one you observed under the null 
hypothesis.

p-value:

α-level: The threshold below which you decide to reject the null 
hypothesis

If you consistently base your decisions on the alpha level, then your Type I 
error rate will either be less than or equal to your alpha level!

We say that it might be less because we admit that the null hypothesis might 
be false for some experiments. Every time the null hypothesis is false, you 
make one less Type I Error, so the rate goes down a bit!



Multiple comparisons



Multiple comparisons
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When people say “multiple comparisons”, what they mean is running more 
than one statistical test on a single set of experimental data.

The simplest design where this will arise is a one-factor design with three 
levels. Maybe something like this:

What do you think that John bought?

What do you wonder whether John bought?

What do you wonder who bought?

An F-test (ANOVA) or linear mixed effects model 
on this design will ask the following question: 
What is the probability of the data under the 
assumption that the three means are equal?

null hypothesis

How many patterns of results will yield a low p-value under this null 
hypothesis?



A significant result tells us relatively little
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Here are all (I think?) of the patterns of results that will yield a significant 
result in a one-way / three-level test. As you can see, a significant result 
doesn’t tell us very much.

If we want to know which of these patterns is the one in our data, we need to 
compare each level to every other level one pair at a time:

= and and

test test test



The multiple comparison problem
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Type I Error Correct Action

Correct Action Type II Error

State of the World
D

ec
is

io
n

H0 True H0 False

Reject H0

Accept H0

This is when the null hypothesis is true, but you mistakenly 
reject it.

Type I Error: 

This is when the null hypothesis is false, but you mistakenly 
fail to reject it.

Type II Error: 

α-level: The threshold at which you decide to reject the null 
hypothesis. 



There are different error rates
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The probability that an experiment contains at least one 
Type I error. We can call this rate EWER.

Experimentwise  
Error Rate:

Familywise  
Error Rate:

This is just like experimentwise error, but allows you to 
define sub-groups of comparisons inside of an 
experiment called a “family”. So this is the probability 
that a family contains at least one error. In most 
experiments, there is just one family, so this will be 
equal to the experimentwise error rate. Let’s call it 
FWER.

Per Comparison 
Error Rate:

The probability that any one comparison is a Type I error 
(number of errors/number of comparisons). You set this 
by choosing a threshold for your decisions. We call the 
threshold α. Let’s call the error rate PCER.

number of statistical tests
PCER = number of errors

number of experiments
EWER = number of experiments with 1 or more errors 



Visualizing the different error rates
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e1 e2 e3 … e20
comp1

comp2

number of statistical tests
= number of errors

Imagine your experiment has 3 comparisons, and you run that experiment 20 
times. Let’s say you set α to .05. Here are your results:

60
= 3 = .05

number of experiments
= number of experiments w/errors

20
= 3 = .15

When you make multiple comparisons, EWER is larger than PCER. This is the 
multiple comparisons problem!

PCER

EWER

comp3



An equation for relating EWER to α
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e1 e2 e3 … e20
comp1

comp2

The relationship between α and EWER is lawful, and follows this equation: 

comp3

EWER = 1 - (1-α)C where C is the number of comparisons.

So for 3 comparisons and an α set to .05, the maximum EWER will be: 

EWER = 1 - (1-.05)3      = .142625

There is code in multiple.comparisons.r to demonstrate EWER, and how the 
EWER will always be more than PCER.

The take-home message is that multiple comparisons increases your type I 
error rate for the entire experiment!



Controlling Experimentwise Error  

The Dunn Correction 

(Mistakenly called the “Bonferroni 
correction” in the literature)



Controlling EW/FW error
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So now you can see that setting an alpha level of .05 for each comparison only 
controls error at the comparison level. If you want to control errors at the 
experiment (or family) level, you need to make an adjustment to your decision 
criterion.

Luckily, the equation for EW/FW error tells us exactly how to do that:

EWER = 1 - (1-α)C

Since EW/FW error is dependent on α, all we have to do is choose an α that 
gives us the EWER that we want! 

You could do this through guessing-and-testing 
if you want, but statistician Olive Dunn figured 
out a much faster way using one of 
mathematician Carlo Bonferroni’s inequalities:

X ≥ 1 - (1-(X/C))C  

As you can see, this inequality looks very similar to the EWER equation above…



The Dunn Correction (“Bonferroni correction”)
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Here is how you can use Bonferroni’s inequality to set your α, and control 
EWER:

X ≥ 1 - (1-(X/C))C  

EWER = 1 - (1-α)C

EWER ≥ 1 - (1-(EWER/C))C  

First, replace the X with EWER because 
that is what we care about. (And C is 
the number of comparisons).

Next, notice that the term EWER/C is 
in the position that α occupies in the 
EWER equation.

From that, it follows that if we set α to 
EWER/C we can keep our EWER at or 
below the number we want!

α
EWER

C
=

The Dunn correction states that we can control our experimentwise error 
rate (EWER) by setting our decision threshold (α) to our intended 
experimentwise error rate divided by the number of comparisons (EWER/C). 
See multiple.comparisons.r for a demo!



Why does EWER/C eliminate errors?
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To see why the Dunn correction eliminates errors (over the long run!), all you 
need to do is think about the distribution of p-values.

α

The original α divides the distribution of p-values into those that lead to 
acceptance of H0, and those that lead to an error (rejection of H0)

If you have two comparisons per experiment, you will basically double the 
number of errors over the long run. These errors will be evenly distributed 
throughout the error zone in the tail.

The Dunn correction cuts the 
tail. In this case, it cuts it in 
half. This means that you will 
eliminate half of the errors, 
which is what you want!

EWER/2

The same logic scales up to any 
number of comparisons. By 
cutting the zone, on average, 
you will move C-1 errors into 
the non-error zone!



A note on the name: Dunn vs Bonferroni
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Olive Dunn proposed the correction in a paper in 1961, but didn’t name it. She 
cites Bonferroni once for the use of the inequality. The paper is super mathy!

Bonferroni was a male mathematician who never worked on statistics.

The field seems to have named the correction sometime after Dunn’s 1961 
paper, and chose Bonferroni for the name. The question is why.

One possibility is to give credit for the use of the inequalities. But that doesn’t 
go through. All statistical tests are named after the statisticians who 
discovered them, including correction procedures: Turkey, Scheffe, Fisher, etc. 
We don’t name things after the mathematicians whose math they used (Euler, 
Leibniz, etc).

Another possibility is that Dunn did not invent the correction. Perhaps it was 
around before her, and called the Bonferroni correction, and she just did the 
mathematical work to figure out its properties. In that case, the name should 
be Dunn-Bonferroni. All other modifications of existing tests do this appending: 
the Holm-Bonferroni correction is a modification of Dunn’s correction proposed 
by Holm in 1979 (where he doesn’t cite Dunn!). 

Another possibility is sexism in science.



Planned versus Post-Hoc Comparisons
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This is a comparison that you specify before running 
your experiment (and crucially before looking at any 
data). Basically, you have a specific hypothesis, and 
decide that the best way to test it is to compare certain 
levels to each other.

Planned  
Comparison:

This is a comparison that you decide to run after 
looking at your data. Basically, you see a difference in 
your data, and are curious to know if it is significant. 
This isn’t theory-driven testing, this is data-driven 
testing.

Post-hoc 
Comparison:

I know it sounds strange, but under NHST, this difference matters for the 
probabilities of Type I errors.



Planned Comparisons and correction
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e1 e2 e3 … e20
comp1

comp2

Imagine your experiment has 3 comparisons, but you decide before you look at 
your data that you are only going to look at comparison 1.

The idea here is that, when you use planned comparisons, the C in equation 
is the number of comparisons that you are actually looking at.

comp3

This eliminates the errors from the comparisons that you are not looking at 
(because you never see them). So you only need to correct for the one 
comparison that you are looking at:

α EWER
C

= α .05
1

= = .05



Planned Comparisons and correction
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e1 e2 e3 … e20
comp1

comp2

Imagine your experiment has 3 comparisons, but you decide before you look at 
your data that you are going to look at comparison 1 and comparison 2.

The idea here is that, when you use planned comparisons, the C in equation 
is the number of comparisons that you are actually looking at.

comp3

This eliminates the errors from comparison 3 (because you never see them). 
But you still see the errors from comparison 1 and comparison 2, so you need 
to correct for that:

α EWER
C

= α .05
2

= = .025



Post-hoc comparisons and correction
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e1 e2 e3 … e20
comp1

comp2

Imagine your experiment has 3 comparisons, but you decide to look for the 
largest effect in each experiment:

The idea here is that, when you use post-hoc comparisons, the C in 
equation is the total number of possible comparisons.

comp3

Notice that the errors are the largest effect in their experiments. This means 
that you will necessarily find errors in all three comparisons. So this process of 
choosing the largest effect eliminates no errors. So you have to correct:

α EWER
C

= α .05
3

= = .0167



OK, so what do we do?
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If you have planned comparisons, just run the Dunn correction with your 
actual number of comparisons (C).

If you have post-hoc comparisons, you can’t use the actual number of 
comparisons, because you chose C after looking at the data. 

The only downside of this option is that this could be a very 
extreme correction (imagine 10 possible comparisons, which 
would be .05/10=.005). If the number of comparisons you are 
actually running is small, and the number of possible 
comparisons is large, you may be over-correcting, and thus 
making it less likely that you will detect significant differences 
that are really there.

Run the Dunn correction with C equal to the maximum number 
of comparisons licensed by your experimental design.

Option 1: 

Run one of the methods that have been proposed to replace the 
Dunn method, like Tukey’s Honestly Significant Difference 
(Tukey’s HSD) or Scheffe’s method. These were designed to 
provide good control of EWER without sacrificing as much power 
as the Dunn method.

Option 2: 



Optional Stopping is Multiple Comparison
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Optional Stopping is when you look at your results, and decide whether or 
not to collect more data based on what you see. (e.g., if the results are 
significant, you stop; if the are not significant, you collect more participants)

Homework assignment: Adapt the code in multiple.comparisons.R to 
demonstrate that optional stopping increases the experimentwise error rate. 
Then show that the Dunn correction fixes the problem.

Optional Stopping increases the experimentwise error rate, just like a multiple 
comparison. So you have to choose the number of participants you are going 
to collect before your experiment!

If you do collect more data after “peaking”, you have to apply a correction like 
Dunn.

add slide or animation for dance of 
the p-values and optional stopping.



Criticisms of NHST
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Balluerka, N., Goméz, J., & Hidalgo, D. (2005). The controversy over null hypothesis significance 
testing revisited. Methodology, 1(2), 55-70.
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controversy. Psychological Methods, 5(2), 241-301 

Hubbard, R & M. J. Bayarri. (2003) P Values are not Error Probabilities.

Despite the ubiquity of NHST as the analysis method for psychology, most 
people who think seriously about data analysis are critical of it.

I would love to spend a couple of weeks talking about these criticisms and 
really diving into the heart of the data analysis problem. But there is not time.

But you all should know enough now to read papers that are critical of NHST 
and think about the problems for yourself. So I’ve collected a bunch of good 
ones into folder you can download from the website. They are:
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Bayes Theorem



Probability Basics
A mathematical statement about how likely an event is to 
occur. It takes a value between 0 and 1, where 0 means the 
event will never occur, and 1 means the event is certain to 
occur. (You can also think of it as a percentage 0% to 100%)

Probability:

Here is an example:

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

Let’s say you have a standard deck of cards. Cards have values and suits. 
There are 13 values and 4 suits, leading to 52 cards:

Let’s say you pull a card at random from the deck. What is the probability of 
drawing a Jack?



Probability Basics

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

There are 52 possible cards. 4 of them are Jacks. So the probability of drawing 
a Jack is:

number of events you care about

total number of events
=

4
52

≅ .08

And what is the probability of drawing a heart?

P(♥) 

=

number of events you care about

total number of events
=

13
52

.25=

P(J) =

This means “probability of J”



Conditional Probability

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

The probability of an event given that another event has 
occurred. 

Conditional 
Probability:

Let’s say you draw a card, but can’t see it. Your friend tells you it is a heart. 
What is the probability that it is a Jack? 

This is a conditional probability. It is asking what the probability of a Jack is 
given that the card is a heart.

number of events that are both Jack and heart

number of heart events
=

1
13

P(J | ♥) =

The pipe symbol means “given that”



Conditional Probability
The probability of an event given that another event has 
occurred. 

Conditional 
Probability:

P(B|A) =
P(A and B)

P(A)

Probability(Event) =
outcomes in the event
total possible outcomes

Notice that the format is very similar to the general probability equation that 
we’ve already seen:

The difference is that the denominator is not all possible outcomes, but just 
the outcomes that have the first event (A). 

This is the mathematical way of saying that we are restricting our attention 
to just the A outcomes, and then looking for a specific event that is a subset of 
A outcomes.



Reversing the order makes a difference!

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

Notice that we can ask two different questions about Jacks and hearts:

P(J | ♥) =
1
13

What is the probability of a Jack given that the 
card is a heart?

What is the probability of a heart given that 
the card is a Jack?

P(♥ | J) =
1
4



Reversing the order makes a difference!

What is the probability of being a movie star given that you live in LA?

number of movie stars in LA
number of people that live in LA

=
250?

~4,000,000
= very low!

What is the probability of living in LA given that you are a movie star?

number of movie stars in LA
number of movie stars

=
250?

~300
= very high!



Reversing the order makes a difference!

What is the probability of being a dark wizard given that are in slytherin?

number of dark wizards from Slytherin
number of students from slytherin

=
30?

5,000?
= fairly low!

What is the probability of being from Slytherin given that you are a dark 
wizard?

number of dark wizards from Slytherin
number of dark wizards

=
30?
30?

= very high!



Bayes Theorem states the relationship between 
inverse conditional probabilities

Even though the two directions of the probabilities are not identical, Bayes 
Theorem tells us that they are related to each other:

P(J|♥)
P(♥|J)

=
x P(J)

P(♥)

Since we already have these numbers, we can verify this pretty easily:

2 3 4 5 6 7 8 9 10 J Q K A
♠ • • • • • • • • • • • • •
♣ • • • • • • • • • • • • •
♦ • • • • • • • • • • • • •
♥ • • • • • • • • • • • • •

=

x
1
13

1
4

4
52

13
52

=

x1
4

1
13

1
4

Bayes Theorem



Bayes Theorem, general form

P(B|A)
P(A|B)

=
* P(B)

P(A)
Bayes Theorem:

Historical Note: Thomas Bayes (1701-1761) was a 
minister in England who was the first to use the rules 
of probability to show us this relationship. It is now 
called Bayes’ Theorem in his honor.

I know it seems like I pulled this equation out of thin air, but it is actually a 
very simple (algebraic) consequence of the definition of conditional 
probabilities. 



Deriving Bayes Theorem
Here is the derivation of Bayes Theorem. As you can see, it is actually fairly 
simple. (The real work is in calculating the different components when you 
want to use it.)

P(B|A) =
P(A and B)

P(A)
1. Definition of conditional probability:

Algebra - multiply by denominator: P(B|A)*P(A) = P(A and B)

P(A|B) =
P(A and B)

P(B)
2. Definition of conditional probability:

Algebra - multiply by denominator: P(A|B)*P(B) = P(A and B)

3. Set 1 and 2 equal to each other: P(B|A)*P(A) = P(A|B)*P(B)

P(B|A)
P(A|B)

=
* P(B)

P(A)
Algebra - divide by P(A):



Some philosophy



Two approaches to probability
Philosophically speaking, there are two ways of thinking about probabilities. 
People disagree about labels for these, but two common ones are objective 
and subjective.

Roughly speaking, objective probabilities are descriptions of the lack of 
predictability that is inherent in some events, like flipping a coin. This 
unpredictability can be measured with real-world observations. 

Objective probabilities can be thought of as long-run relative frequencies. 
If you were to repeat the event over and over, probability is the proportion that 
you would get.
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Here is a plot of coin flips over time (run four 
times). As you can see, objective probabilities 
don’t tell you anything about individual events, 
but over time, the proportion becomes .5



Two approaches to probability

Roughly speaking, subjective probabilities are descriptions of our uncertainty 
of knowledge about an event. We use subjective probabilities when we say 
“there is a 10% chance of rain tomorrow”. This is not about long-run relative 
frequency. We aren’t going to repeat the event each day to see if it rains 10% 
of the time. Instead, we are talking about the strength of our beliefs in an 
event.

NHST approaches to statistics (Fisher and Neyman-Pearson) are (mostly) 
aligned with the objective approach to probability. The probabilities that we 
calculate are the hypothetical proportions that we would obtain if we actually 
ran the experiments over and over again. They are intended to be interpreted 
as long-run relative frequencies. This is why people call NHST approaches to 
statistics frequentist. The probabilities are related to objective frequencies.

Bayesian statistics are aligned with the subjective approach to probability. 
The probabilities in Bayesian statistics are not intended to be interpreted as 
long-run relative frequencies. For Bayesians, it makes no sense to talk about 
hypothetical repeated experiments. There is one experiment, and we want to 
know how strong our beliefs should be in different theories (similar to the 
example about rain).



Bayes Theorem for Science



Bayes Theorem for science

We can use Bayes Theorem to tell us how strongly we should believe in a 
hypothesis given the data that we observed.

P(hypothesis | data)
P(data | hypothesis)

=
x P(hypothesis)

P(data)

likelihood priorposterior

evidence

The idea here is that you have a prior belief about a hypothesis (the prior 
probability). Then you get some evidence (data) from an experiment. Bayes 
Theorem tells you how to update your prior beliefs using that evidence 
and the likelihood of the data given that hypothesis. Your updated beliefs 
are then called your posterior beliefs, or posterior probability.  



A real world example
Medical tests are a classic example of trying to prove a theory (that you have a 
disease) with positive evidence (that you have symptoms of the disease).

This example is about updating beliefs. Prior to the test, you have beliefs 
about having the disease. After the test, you have more evidence, and need to 
update those beliefs. The question is what the new beliefs should be. Most 
people, and an unfortunately large number of doctors, will say 98.5%. But this 
is wrong! To really calculate the probability of our theory, we need to use 
Bayes Theorem to calculate the posterior probability!

100% of people with Disease X will test positive using a test.

Let’s try an example.

1.5% of people without Disease X will also test positive using a test.

Let’s say someone goes to the doctor to take a test, and the result comes back 
positive. What is the probability that they have Disease X?



Bayes Theorem and Medical Tests

This is what we 
want to know

This is how good the 
test is when the 
disease is present. For 
X, it is 100% or 1.

This is the likelihood 
of having X in the US, 
period. Let’s say it is 
0.35% or .0035. 
People often ignore 
this number!

This is a tricky number to calculate. It is the total 
likelihood of getting a positive result, whether you 
have Disease X or not. You add up all of the true 
positives (0.35%) and all of the false positives 
(1.5% of the 99.65% of the population that doesn’t 
have X). For X, this total is 1.84% or .0184.

P(having X | a positive test)  =
P(a positive test | having X) x P(having X)

P(a positive test)



Plugging in the numbers

This is a far cry from the 98.5% that many people (and some doctors) believe 
when they hear about a positive test.

P(having X | a positive test)  =
1 x .0035

.0184

The probability that any random person in the US has Disease X is 0.35%.

P(having X | a positive test)  = .19   =   19%

Given the numbers that I gave you (which are fairly accurate for some deadly 
diseases), we see that a positive test means that the probability of having 
Disease X increases from 0.35% to 19%. So we should update our beliefs 
from .35% to 19%



A fun example: the Monty Hall problem

1 2 3There was a gameshow in the 70s hosted 
by Monty Hall that had a game as follows. 
There are 3 doors. One has money 
behind it, the other two have goats.

The contestant picks door number 1. 
Monty then opens door 2, and shows 
them a goat.

1 3

The contestant should choose the door 
with highest probability of a prize. So 
they need to know: (i) the probability 
that the money is behind door 1 given 
that Monty opened 2, and (ii) the 
probability that the money is behind 3 
given that Monty opened 2.

Monty then offers them a choice: keep 
their door, or switch to door 3. What 
should they do?

P(prize 1 | open 2)

P(prize 3 | open 2)

-vs-



The two conditional probabilities

P(prize 1 | open 2) P(open 2 | prize 1)= x P(prize 1)

P(open 2)

P(prize 3 | open 2) P(open 2 | prize 3)= x P(prize 3)

P(open 2)

1 3

$$$

1 3

$$$



The first conditional probability

P(prize 1) This is 1/3. There are 3 doors, and the TV show 
could choose any of them. The starting probability 
(prior probability) for each door is 1/3.

P(open 2 | prize 1) This is 1/2. If the prize is behind door 1, then Monty 
can choose either door 2 or door 3.

P(open 2) This is the tricky one. The answer is 1/2, but I need 
the entire next slide to show you how we get that.

P(prize 1 | open 2) P(open 2 | prize 1)= x P(prize 1)

P(open 2)
1 3

$$$



Calculating p(open 2)

If the prize is behind door 1, the probability of 
opening 2 is 1/2.

The tricky for calculating the evidence is that you have to consider every 
possible theory (prize 1, prize 2, prize 3), and calculate the probability of the 
data (open 2) under each theory. 

1 2 3

$$$

1 2 3

$$$

If the prize is behind door 2, the probability of 
opening 2 is 0. Monty can’t open that door.

1 2 3

$$$

If the prize is behind door 3, the probability of 
opening 2 is 1. Monty can’t open door 1 because the 
contestant chose it. He can’t open 3 because it has 
the prize. So he has to choose door 2.

There are 3 theories, each with a prior probability of 1/3. We weight each 
theory by its prior probability, which means multiplying each by 1/3, and then 
sum. This tells us how likely open 2 would be out of all possible worlds:

(1/3 x 1/2) + (1/3 x 0) + (1/3 x 1) = 1/2P(open 2) =



The first conditional probability

P(prize 1 | open 2) P(open 2 | prize 1)= x P(prize 1)

P(open 2)
1 3

$$$

We can actually take a shortcut now. Since the prize has to be behind door 1 
or door 3, and we know door 1 is 1/3, and we know probability must equal 1, 
then that means that probability for door 3 must be 2/3! But let’s do the 
calculation anyway.

P(prize 1 | open 2) 1/2= x 1/3

1/2

P(prize 1 | open 2) = 1/3



The second conditional probability

P(prize 3) This is 1/3. There are 3 doors, and the TV show 
could choose any of them. The starting probability 
(prior probability) for each door is 1/3.

P(open 2 | prize 3) This is 1. Monty can’t choose 1 because the 
contestant chose it. He can’t choose 3 because it has 
the prize. He has to choose 2

P(open 2) We already know that this is 1/2 by the previous 
calculation.

P(prize 3 | open 2) P(open 2 | prize 3)= x P(prize 3)

P(open 2)
1 3

$$$



The second conditional probability

P(prize 3 | open 2) P(open 2 | prize 3)= x P(prize 3)

P(open 2)
1 3

$$$

P(prize 3 | open 2) 1= x 1/3

1/2

P(prize 3 | open 2) = 2/3

This is exactly what we calculated with our shortcut. So we can see that 
Bayes Theorem really works.



A fun example: the Monty Hall problem

1 2 3When we begin the gameshow, each door 
has the same probability of having a 
prize.

But once Monty chooses a door, he is 
actually (perhaps unintentionally) giving 
us more information with which to 
update our beliefs. We can use Bayes 
Theorem to figure out how to update our 
beliefs.

1 3

Bayes Theorem tells us that we should 
switch doors. If we switch, we’ll win 2/3 
of the time. If we stay, we’ll only win 1/3 
of the time. (Though this example was 
phrased as about door 1, it is really about 
the contestant’s door versus the 
unopened door.)

P(prize 1 | open 2) = 1/3

P(prize 3 | open 2) = 2/3

-vs-

1/3 1/3 1/3



Bayesian updating is NOT intuitive

1 2 3

In 1990, a reader asked columnist Marilyn vos Savant to solve Monty Hall’s 
problem. She did, correctly (using logic rather than Bayes Theorem):

But people didn’t believe her. The problem is that the result is not intuitive. 
With two choices left, many people believe that the answer is 1/2 for both door 
1 and door 3. 

1 3

1/3 1/3 1/3 1/3 2/3

You can read some of the responses that people wrote to her answer. The 
embarrassing thing is that a number of them were academics/math teachers. 

http://marilynvossavant.com/game-show-problem/

Today, we can run simulations to prove this. The script monty.hall.r contains a 
simulation to show you that the answer is 1/3 and 2/3, not 1/2 and 1/2.



Bayesian Statistics

Doing full Bayesian statistics can be very complicated, because some of the 
components of Bayes Theorem are difficult to calculate for real-world scientific 
hypotheses.

P(hypothesis | data)
P(data | hypothesis)

=
x P(hypothesis)

P(data)

Kruschke’s Doing Bayesian Data Analysis is a great 
one-stop shop for beginning Bayesian statistics. It has a 
gentle introduction to probability and Bayes, and even 
organizes Bayesian models around the NHST tests that 
they are most like. It is a great way to transition, but it 
makes it clear that Bayesian statistics is more about 
modeling than about creating statistical tests. 

This is why Bayesian analysis is very common in the computational modeling 
world (where they develop tools to estimate complex probabilities), but less 
common in the experimental world.



Bayes Factors



Bayes Factors

Because full Bayesian statistics can be very complicated, some statisticians 
have suggested that experimentalists could use Bayes Factors to do a 
Bayesian analysis without having to become computational modelers.

Bayes Factors are the ratio of the probability of the data under one hypothesis 
to the probability of the data under a second hypothesis. Typically, the two 
hypotheses are the experimental hypothesis (H1) and the null hypothesis (H0), 
though they could be any two hypotheses that you want:

P(data | H1)

P(data | H0)

You can setup the ratio in whichever direction is most convenient for your 
question (do you care more about H1, or more about H0):

Bayes Factor1,0 =

P(data | H0)

P(data | H1)
Bayes Factor0,1 =

This is the ratio of the probability of 
the data under H1 to H0.

This is the ratio of the probability of 
the data under H0 to H1.



Interpreting Bayes Factors

Bayes Factors are a ratio, so they will range from 0 to infinity. For example, a 
BF1,0 of 3 means that the data is 3x more likely under H1 than H0. 

Jeffries (1939/1961) suggested some rules of thumb for interpreting Bayes 
Factors. 

P(data | H1)

P(data | H0)
BF1,0 =

P(data | H0)

P(data | H1)
BF0,1 =

BF Evidence
0 to .01 extreme for H0
.01 to .1 strong for H0
.1 to .33 substantial for H0
.33 to 1 anecdotal for H0
1 to 3 anecdotal for H1
3 to 10 substantial for H1

10 to 100 strong for H1
100 to ∞ extreme for H1

BF Evidence
0 to .01 extreme for H1
.01 to .1 strong for H1
.1 to .33 substantial for H1
.33 to 1 anecdotal for H1
1 to 3 anecdotal for H0
3 to 10 substantial for H0

10 to 100 strong for H0
100 to ∞ extreme for H0



Deriving Bayes Factors from Bayes Theorem

Bayes Factors come directly from Bayes theorem. The basic idea is to set up a 
ratio between two tokens of Bayes theorem - one for H1 and one for H0:

P(H1 | data)
P(data | H1)

=
x P(H1)

P(data)

P(H0 | data)
P(data | H0)

=
x P(H0)

P(data)

This is the ratio of the 
probability of H1 to H0 
given some data. In other 
words, this would tell us 
how much more likely H1 
is than H0 given some 
data. That would be really 
useful, but it is difficult to 
calculate.

Then we can simplify using basic algebra:

P(H1 | data) P(data | H1)
=

x P(H1)
P(data)P(H0 | data)

x
P(data | H0) x P(H0)

P(data)

P(H1 | data) P(data | H1)
=

P(H0 | data)
x

P(data | H0) P(H0)

P(H1)



Deriving Bayes Factors from Bayes Theorem

P(H1 | data) P(data | H1)
=

P(H0 | data)
x

P(data | H0) P(H0)

P(H1)

Bayes Factor Prior OddsPosterior Odds

One neat thing about seeing how Bayes Factors are derived is that you can see 
how useful they can be.

They are useful on their own. They tell you the (odds) ratio of the data under 
the two hypotheses.

They are also useful in combination with the priors. If you know the prior odds 
(the ratio of the two priors to each other), then BFs tell you how to update 
those priors into posteriors!

For example, a BF of 10 tells you that you should multiple your prior odds by 
10 to get your posterior odds. So, if you thought H1 was 2 times more like 
than H0, a BF of 10 tells you to update this to 20x more likely!



Using Bayes Factors

There are two practical reasons to use Bayes Factors over full Bayesian 
models.

1. Bayes Factors don’t require priors. 

Jeff Rouder and colleagues have developed an R package that will calculate 
(simplified) BFs for you for a number of standard designs in experimental 
psychology. It is as easy as any test in R.

Prior probabilities are often very subjective. They are simply how likely you 
think a theory is. Different scientists will disagree on the priors for any given 
hypothesis. Bayes Factors sidestep this issue by sidestepping priors. They 
simply tell you how to update your priors based on the evidence.

2. Bayes Factors are very easy to calculate under certain assumptions

If you are willing to grant some simplifying assumptions, BFs are much easier 
to calculate than full Bayesian models.

The BayesFactor R package and 
accompanying blog at bayesfactor.blogspot.org

http://bayesfactor.blogspot.org


Why the excitement?

 359

One reason that so many people are excited about Bayesian statistics is that it 
appears to give us (scientists) the information that we really want.

We want to know how likely a theory is to be true based on the evidence we 
have. That is what Bayes promises us… based on the axioms of probability!

This is in stark contrast to NHST, which gives the probability of the data 
assuming the uninteresting theory is true. It is only through logical acrobatics 
(Fisher’s distjunction, or hypothetical infinite experiments) that we can convert 
that into something usable.

P(experimental hypothesis | data)
P(data | null hypothesis)

Bayesian statistics:
NHST:

Bayesian statistics also overcomes some other limitations of NHST, such as not 
being able to test the null hypothesis directly (for Bayes, it is just another 
hypothesis), and not being able to peak at the data without increasing Type I 
errors (it is called the optional stopping problem; for Bayes, data is data). 
There is no space to cover these here, but I want to mention them so you can 
search for them. 



Where to find more about Bayes
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Kruschke’s Doing Bayesian Data Analysis is a great 
one-stop shop for beginning Bayesian statistics. It has a 
gentle introduction to probability and Bayes, and even 
organizes Bayesian models around the NHST tests that 
they are most like. It is a great way to transition, but it 
makes it clear that Bayesian statistics is more about 
modeling than about creating statistical tests. 

The BayesFactor R package and 
accompanying blog at bayesfactor.blogspot.org

http://bayesfactor.blogspot.org


Comparing Frequentist and Bayesian 
statistics



Subjectivity, Subjectivity, and the Null
The comparison of frequentist and Bayesian stats is a large and complex topic. 
I can’t do it justice here, but I can mention three major differences:

1. The philosophy of probability

As previously mentioned, frequentists are more closely aligned with objective 
probability, and Bayesians are aligned with subjective probability.

2. The “subjectivity” of the calculation

Fisher explicitly developed his NHST in response to Bayesian statistics! He 
thought the specification of priors was too “subjective”, so he focused on the 
likelihood, which he found to be more “objective”.

P(hypothesis | data)
P(data | hypothesis)

=
x P(hypothesis)

P(data)

3. Proving the null

NHST can’t make any claims about the null hypothesis, because it is assumed 
to be true. Bayesian stats can “prove the null”. It is simply another hypothesis.


