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Epistemology
You didn’t even know it, but the first two sections of this course were a 
detailed case study in an area of philosophy called epistemology.

Epistemology is a word of Greek origin meaning “study or theory of 
knowledge”. The field of epistemology is concerned with two broad questions:

1. What is knowledge? What does it mean to “know” something?

2. How is knowledge acquired? What is the process by which humans come to 

    “know” something?

You might notice that these are the two driving questions behind the first two 
units of this course!



What is knowledge of language?
What we’ve learned is that to know a language is to know the mental 
representations of your language.

And we have seen that knowing the mental representations of your language 
means that you know the the units (phonemes, morphemes, syntactic 
categories) and grammatical rules (phonological rules, morphological rules, 
phrase structure rules, transformations) of your language.

In short, knowledge of language is the knowledge of the grammar of your 
language.

And that grammar is complicated:

Units Grammatical Rules

phonemes

morphemes

syntactic categories

phonological rules

morphological structure building rules

phrase structure rules and transformations



How is knowledge of language acquired?
In epistemology, knowledge is divided into two types: a priori knowledge, and 
a posteriori knowledge:

a priori knowledge: knowledge that comes before experience

a posteriori knowledge: knowledge that comes from experience

Philosophers tend to focus on something called “analytic truths”, which are 
truths that are true by definition of the words in them. “A bachelor is a 
man” is true by the definition of “bachelor” and “man”.

But in linguistics, we’ve seen that there is another type of 
a priori knowledge - the knowledge that is specified by 
your genes, which may help facilitate language learning.

Philosophers tend to focus on something called “synthetic truths”, which 
are truths that are established by observation (or in other words, truths 
that could have been different), such as “ravens are black”.

In linguistics, we’ve seen that evidence from experience 
must be part of language learning.



From Linguistics to the Philosophy of 
Science



Infinite sets and Scientific Theories

The set of all numbers 
greater than 2

Recall from the logical problem of 
language acquisition that we can define 
an infinite collection of objects - an 
infinite set. This is easiest to see with 
numbers.

The set of sentences 
in English.

Recall from our linguistic theory that the 
set of sentences in a given language is 
an infinite set. 

All ravens are black.
It also turns out that many scientific 
theories can also be formulated as 
infinite sets.

If your theory says that all ravens are black, that means if you encounter an 
infinite number of ravens, they will all be black.



Learning infinite sets

The set of all numbers 
greater than 2

Recall that we saw that there is a major 
logical problem with learning infinite 
sets from a finite subset.

The set of sentences 
in English.

That logical problem was also an issue 
for learning a language.

All ravens are black.
The same logical problem holds for 
establishing the truth of scientific 
theories from evidence.

The theories are infinite sets, the evidence is (always) a finite subset, so the 
same logical problem arises in science. How do we guarantee the truth of 
our (infinite) scientific theories from finite evidence???

The cat…

2, 4, 8



Finding a process for establishing the truth 
of scientific theories



Why should we care about the process?

Human advancement has not been steady. Our knowledge grew slowly for 
thousands of years, and has exploded after the last couple of hundred. The 
reason is the scientific method.

3000 BCE 2000 BCE 1000 BCE 1 CE 1000 CE 2000 CE

pre-Aristotle Aristotle’s scholastic view

For nearly 2000 years, theories about the universe 
were dominated by Aristotle’s view that there 
were 4 elements (earth, air, water, fire), and the 
earth was the center of the universe.

Scientific 
Revolution

Then from 1550-1700 prominent thinkers started to question those theories, 
and even question how to build a theory. We call this the age of enlightenment 
or the scientific revolution. From that point forward, the expansion of human 
knowledge has been dramatic!



Why should we care about the process?
Scientific debates are becoming more and more relevant to the world we live 
in. As information becomes easier and easier to access, it is critical that we 
understand how to use evidence to prove/disprove theories.

In short, there are a number of issues in society that depend upon an 
understanding of what it means to use evidence.
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It is all about changing your mind!
We all have beliefs about how the 
universe works. 

Science gives you a set of rules for 
figuring the universe out, and most 
importantly, for changing your mind 
when you encounter new evidence. 

The rules of science say that if you 
believe something, you should be able 
to state exactly what evidence you 
have for your belief AND what 
evidence you would need to see to 
change your belief!

Then you can use the processes like 
falsification and confirmation/
Bayes Theorem to update your 
beliefs - which we will discuss next!

Theory

Predictions

Test

Revision

Karl Popper

1902-1994

Thomas Bayes

1701-1761



The challenge of infinite theories and finite 
evidence:


The Problem of Confirmation



Positive Evidence and 

The Problem of Confirmation

The powers of 2
Recall that we learned that 
positive evidence will not 
guarantee that we learn the 
correct infinite set from a finite 
subset. This is because any 
given finite subset is compatible 
with multiple infinite sets.

2, 4, 8

All ravens are black.The same problem transfers to 
the infinite sets defined by 
scientific theories.

300 ravens are black.

The rest are white.

For example, let’s say you’ve 
observed 300 black ravens. That 
finite subset is compatible with 
the theory that all ravens are 
black. It is also compatible with 
the theory that 300 are black, 
and the rest are white.

Even numbers.

In fact, it is compatible with every 
theory that has at least 300 black 
ravens! (301, 302, 303…)



The Problem of Confirmation
We use the term confirmation to describe the process of finding evidence 
that supports a theory. In other words, observing examples that match your 
theory. In yet other words, finding positive evidence.

Although confirmation sounds like a good thing, it comes with a problem called 
the problem of confirmation. The problem of confirmation is that any given 
piece of positive evidence can be used to confirm (i.e., is compatible with) an 
infinite number of theories!

observations

theories

In other words, you can never 
confirm a single theory. 
Whenever you have positive 
evidence, it is evidence for an 
infinite number of theories.

And that means you haven’t 
really done anything at all. 



One solution to the problem of confirmation: 
Falsification



Negative Evidence and Falsification

Recall that we learned that 
negative evidence, what is NOT 
in the set, can help us.

We can do the same thing with 
scientific theories. All ravens are black.

Ravens are either 
black or white.

If the theory is true, all ravens 
should be black. We can look for 
what should not be in the set - 
white ravens. 

If we find a white raven, the theory that all ravens is black is not true.  We 
say that we have falsified the theory that all ravens are black. And then we 
should only consider theories that allow for both black and white ravens.

The powers of 2

2, 4, 8

Even numbers.

44
We saw that we could use it 
strategically to test different 
theories…



Falsification in science
The philosopher Karl Popper proposed falsification as a way around the 
problem of confirmation.

The process of attempting to prove 
a theory wrong (falsify it).

falsification:

Karl Popper

1902-1994

For Popper (and other believers in falsification), a theory is only scientific it can 
be falsified. In other words, scientific theories have to take risks. They have to 
make predictions that could potentially prove them wrong. If a theory can’t be 
falsified it is not a scientific theory!

This is a powerful idea, because it constraints what counts as a scientific 
theory. You must be able to say what evidence would disprove the 
theory. If you can’t do that, it is not testable, and therefore not scientific.



The limits of falsification

One of the most interesting aspects of Popper’s theory of 
falsification is that it completely denies the existence of 
confirmation. Falsification says “Confirmation is a myth.” You 
cannot support a theory with evidence.

If a prediction is shown to be false, then the theory is falsified. 

If a prediction is shown to be true, then we can’t say anything about the 
theory. All we can say is that the theory has not yet been falsified. 

Karl Popper

1902-1994

In other words, under falsification, you can never prove a scientific theory 
to be true. You can only say that it hasn’t been disproven.



But humans like confirmation…

Many people find it odd to say that you can’t prove a scientific theory. In fact, 
many people have the intuition that confirmation is real!

Let’s say that you are asked to build a new 
bridge. You have two choices of design:

An old design that has been used for 
hundreds of bridges, none of which have 
collapsed.

1.

A brand new design that has never been 
tested before.

2.

Which would you choose? Falsification says that both bridges are equal, 
because neither has been falsified yet. But I bet you’d prefer to drive on the 
one that has been tested hundreds of times! That is confirmation.

Here is a thought experiment to demonstrate that we tend to believe in 
confirmation:



Putting confirmation back into science:

Probabilities and Bayes Theorem



Probabilities may allow for confirmation

The problem of confirmation teaches us that positive evidence is compatible 
with an infinite number of theories.

But this does not mean that the evidence is equally compatible with each 
theory.

This observation is compatible with an infinite number of theories:

300 ravens are black, the rest are white.

301 ravens are black, the rest are white.

302 ravens are black, the rest are white.

…

95% of ravens are black, 5% are white.

100% of ravens are black.

Let’s say you’ve observed 300 black ravens, 
and no white ravens.

x 300

x 0

But these are relatively 
unlikely. It is unlikely that you 
just happened to find all of the 
black ravens and none of the 
white ones!

These are more likely.



The probability of a theory
This intuition suggests that, even though positive evidence is compatible with 
an infinite number of theories, positive evidence can suggest that some 
theories are more likely than other theories.

So what we want to do is develop a precise way to conclude how likely a 
theory is given a piece of positive evidence. 

P(theory | evidence)
P(evidence | theory)

=
x P(theory)

P(evidence)

And here is an equation that might do it for us. It is called Bayes Theorem.

Don’t worry. I will explain how this works over the next 
few slides. You also don’t have to memorize this equation 
for the exam. I just want to show this to you because it 
is an incredibly important equation in science (and 
cognitive science), so it is something you should know 
about. On the exam itself, all you need to know is what 
Bayes Theorem does for us; not the equation itself. 

Thomas Bayes

1701-1761



Some basic terms

A mathematical statement about how likely an event is to 
occur. It takes a value between 0 and 1, where 0 means the 
event will never occur, and 1 means the event is certain to 
occur. (You can also think of it as a percentage 0% to 100%)

Probability:

We write it like this:    p(theory) = .5

The probability of an event given that another event has 
occurred. 

Conditional

Probability:

We write it like this:    p(theory|evidence) = .9

This says that the probability of our theory being true given 
the evidence that we observed is .9

This is what we care about - we want to know how likely our 
theory is given that we collected some evidence for it!



Getting a feel for conditional probabilities

What is the probability of being a dark wizard given that you are in slytherin?

number of dark wizards from Slytherin

number of students from slytherin
=

30?
5,000?

= fairly low!

What is the probability of being from Slytherin given that you are a dark 
wizard?

number of dark wizards from Slytherin

number of dark wizards
=

30?
30?

= very high!

Notice that if you flip the conditional around, the numerator is the same, but 
the denominator changes. This changes the probability entirely!

p(dark wizard | slytherin) = 

p(slytherin | dark wizard) = 



Bayes Theorem tells us how to calculate one 
conditional from its inverse!

Notice that this is just an equation. It has one condition probability on the left 
hand side. And it has the inverse (flipped order) on the right hand side, plus 
two basic probabilities.

P(theory | evidence)
P(evidence | theory)

=
x P(theory)

P(evidence)

Equations just tell us how to calculate things. This equation says we can 
calculate the thing on left if we know all of the numbers on the right. Notice 
that the thing on the left is really important — it is confirmation in science! So 
this is an important equation for us!

Actually applying Bayes Theorem to a theory is not always easy. It can be very 
difficult to calculate all of the probabilities on the right hand side. But nobody 
said science was easy!



A fun example of Bayes Theorem in action



The Monty Hall problem

In the 1970s, there was a game show hosted by Monty Hall called Let’s Make a 
Deal. In one of the games on the show, he showed contestants three doors, 
and asked them to choose one:

1 2 3

1/3 1/3 1/3

At the start of the game, the probability for each door that the money was 
behind it was 1/3.

1 2 3

Here are three doors. One has money behind it. The other two have goats.



The Monty Hall problem

1 2 3

1 3

To make things concrete, let’s select door 1:

After contestants selected their door, Monty Hall would then select one of the 
other doors himself, and open it to reveal a goat:

Monty Hall would then ask the contestants if they wanted to keep their first 
choice, or switch to the remaining unopened door. What would you do?



This is about probabilities

1 3

In order to make a choice, you have to figure out the probabilities that the 
money is behind each door.

The reason this is tricky is that most people assume that nothing has changed 
in the probabilities. They were equal before the goat, and they are equal after:

1 3

1/2 1/2

Each door was 1/3 before the goat. After the goat, there are only two options 
left, and they must sum to 1, so they must be 1/2 each.



But this is wrong!

1 3

In fact, the probabilities have changed:

The intuitive reason behind this is that Monty Hall knew which door hid the 
money. When he made his choice, he used this knowledge - he made sure that 
he did not open a door that hid money. So his action is evidence!

1/3 2/3

P(prize 3 | open 2) P(open 2 | prize 3)= x P(prize 3)

P(open 2)

P(prize 1 | open 2) P(open 2 | prize 1)= x P(prize 1)

P(open 2)

And once we see it as evidence, we can use Bayes Theorem to calculate 
exactly what the probabilities are for each door:



The first conditional probability

P(prize 1) This is 1/3. There are 3 doors, and the TV show 
could choose any of them. The starting probability 
(prior probability) for each door is 1/3.

P(open 2 | prize 1) This is 1/2. If the prize is behind door 1, then Monty 
can choose either door 2 or door 3.

P(open 2) This is the tricky one. The answer is 1/2, but I need 
the entire next slide to show you how we get that.

P(prize 1 | open 2) P(open 2 | prize 1)= x P(prize 1)

P(open 2)
1 3

$$$



Calculating p(open 2)

If the prize is behind door 1, the probability of 
opening 2 is 1/2.

The tricky bit for calculating the evidence is that you have to consider every 
possible theory (prize 1, prize 2, prize 3), and calculate the probability of the 
data (open 2) under each theory. 

1 2 3

$$$

1 2 3

$$$

If the prize is behind door 2, the probability of 
opening 2 is 0. Monty can’t open that door.

1 2 3

$$$

If the prize is behind door 3, the probability of 
opening 2 is 1. Monty can’t open door 1 
because the contestant chose it. He can’t open 
3 because it has the prize. So 2 is the only one.

There are 3 theories, each with a prior probability of 1/3. We weight each 
theory by its prior probability, which means multiplying each by 1/3, and then 
sum. This tells us how likely open 2 would be out of all possible worlds:

(1/3 x 1/2) + (1/3 x 0) + (1/3 x 1) = 1/2P(open 2) =

=1/2

=0

=1



The first conditional probability

P(prize 1 | open 2) P(open 2 | prize 1)= x P(prize 1)

P(open 2)
1 3

$$$

We can actually take a shortcut now. Since the prize has to be behind door 1 
or door 3, and we know door 1 is 1/3, and we know probability must equal 1, 
then that means that probability for door 3 must be 2/3! But let’s do the 
calculation anyway.

P(prize 1 | open 2) 1/2= x 1/3

1/2

P(prize 1 | open 2) = 1/3



The second conditional probability

P(prize 3) This is 1/3. There are 3 doors, and the TV show 
could choose any of them. The starting probability 
(prior probability) for each door is 1/3.

P(open 2 | prize 3) This is 1. Monty can’t choose 1 because the 
contestant chose it. He can’t choose 3 because it has 
the prize. He has to choose 2

P(open 2) We already know that this is 1/2 by the previous 
calculation.

P(prize 3 | open 2) P(open 2 | prize 3)= x P(prize 3)

P(open 2)
1 3

$$$



The second conditional probability

P(prize 3 | open 2) P(open 2 | prize 3)= x P(prize 3)

P(open 2)
1 3

$$$

P(prize 3 | open 2) 1= x 1/3

1/2

P(prize 3 | open 2) = 2/3

This is exactly what we calculated with our shortcut. So we can see that 
Bayes Theorem really works.



Bayes Theorem is not intuitive!

What we thought:

We can show that Bayes gives us the correct result with simulations:

https://www.rossmanchance.com/applets/MontyHall/Monty04.html 

Lesson 2: Our gut reactions are not always correct. The Philosophy of Science 
(including falsification and Bayes) gives us tools to make sure that we are 
updating our beliefs correctly. It is important that we apply them rather than 
just going with our gut reactions.

1 3 1 3

1/2 1/2 1/3 2/3

What Bayes gave us:

Lesson 1: Bayes theorem works. We can see that the math and the 
simulations match up.

https://www.rossmanchance.com/applets/MontyHall/Monty04.html


Conclusions
Theory

Predictions

Test

Revision

A theory is only scientific if it makes testable 
predictions. We can then go out and test those 
predictions to see if the theory is correct or not. If 
it is not, we can revise the theory, and start the 
cycle over again.

Falsification is the process of finding evidence that disproves a theory with 
certainty.

Confirmation is the process of finding evidence that supports a theory 
(positive evidence).

The problem of confirmation is that finite observations are 
compatible with an infinite number of scientific theories.

Falsification is the gold standard of science, but there are circumstances 
where it isn’t possible.

We can use Bayes Theorem to partially overcome this, by deriving 
probabilities for theories from positive evidence.


