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Class 18: The logic of ANOVA
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Psychology



The challenge for experiments with 3 or more 
conditions



The problem with differences between means

3

When you have 2 conditions, it is really 
straightforward to use the difference 
between means of the two conditions as 
the effect. You simply subtract them and 
ask whether that difference is different 
from your null hypothesis. If your null 
hypothesis is 0, as it usually is, it might 
look like this example. t-tests simply take 
variability into account when they formalize 
this!

ȳ = 2

condition 1

ȳ = 2

condition 2

ȳ - ȳ = 2 - 2 = 0

But what happens if you have 3 conditions? Here are three conditions that 
all have the same mean. If we try to use the difference between means, 
something odd happens:

ȳ = 2

condition 1

ȳ = 2

condition 2

ȳ - ȳ - ȳ

ȳ = 2

condition 3

2 - 2 - 2 = -2

These are all the same, but 
the difference between 
means is not zero!



The problem with differences between means
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It can also be the case that 3 conditions have very different means, but still 
yield a difference of 0:

ȳ = 6

condition 1

ȳ = 4

condition 2

ȳ - ȳ - ȳ

ȳ = 2

condition 3

6 - 4 - 2 = 0

These are all different, but 
the difference is zero!

So what we see is that for 3 (or more) conditions, the simple approach of 
looking at the difference between means stops serving us well. 

What we need is a method for determining if the conditions come from 
populations with the same parameters or not that works for 3 (or more) 
conditions. That is what ANOVA is for.

Note: There are other advantages to ANOVA that the book mentions briefly, 
but we won’t be able to see those in detail until next week, so I am setting 
those aside until then.



We can use variance! 

(I know, this seems weird. Bear with me.)



Analysis of Variance
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ANOVA stands for Analysis of Variance. The big idea is that there are two 
methods for estimating the variance of a population from samples. We can 
compare those two variance estimates to each other.

We already know one method for estimating the variance of a population 
from two or more sample means. We start by calculating the variance for a 
single sample:

s2 =
(x1 - x)̄2 + (x2 - x)̄2 + … + (xn - x)̄2

n-1

+s1
2 s2

2

(n1-1) + (n2-1)

(n1-1) (n2-1)
=2sp

And then we can combine their variances together into the pooled variance (a 
weighted mean of two variances):

There is a second method to calculate the variance from two (or more 
samples) - we can use the sample means directly! (Really!) Let’s see it now.

s2 =
n-1

∑(xi - x)̄2

or

ntotal-k

∑ s i
2(ni-1)

=or 2sp
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Estimating variance from sample means
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To see that we can use sample means to estimate the variance of a 
population, we need to see the full picture of where sample means come from:

p
o

p
u

la
ti

o
nWe start with a 

population. I’ll use 
our old friend height:

We draw 3 samples 
of 10 from this 
population. Like an 
experiment with 3 
conditions!

The means of these 
samples came from 
the distribution of 
sample means - the 
sampling distribution 
of the mean!

Take a moment to 
make sure you see 
how the samples 
come from the 
population, but the 
sample means come 
from the sampling 
distribution of the 
mean. This is 
critical!

x ̄= 175 x ̄= 178x ̄= 172
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µ = 175

σ2 = 10

µ = 175

σ2 = 100

x ̄
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Estimating variance from sample means
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To see that we can use sample means to estimate the variance of a 
population, we need to see the full picture of where sample means come from:

p
o

p
u

la
ti

o
nWe start with a 

population. I’ll use 
our old friend height:

We draw 3 samples 
of 10 from this 
population. Like an 
experiment with 3 
conditions!

The means of these 
samples came from 
the distribution of 
sample means - the 
sampling distribution 
of the mean!

s2 =
k-1

∑(xī - xḠ)2

We can calculate a 
variance score using 
these 3 numbers:

But notice that it is 
the variance of the 
sampling distribution 
of the mean, not the 
population, because 
these are means!

x ̄x ̄= 175 x ̄= 178x ̄= 172

µ = 175

σ2 = 10

µ = 175

σ2 = 100

x ̄
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Estimating variance from sample means
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To see that we can use sample means to estimate the variance of a 
population, we need to see the full picture of where sample means come from:

p
o

p
u

la
ti

o
nWe start with a 

population. I’ll use 
our old friend height:

We draw 3 samples 
of 10 from this 
population. Like an 
experiment with 3 
conditions!

The means of these 
samples came from 
the distribution of 
sample means - the 
sampling distribution 
of the mean!

n
σx ̄=

σ

Finally, remember 
that σx ̄is related to 
the population σ 
using this equation:

x ̄= 175 x ̄= 178x ̄= 172

µ = 175

σ2 = 10

µ = 175

σ2 = 100

x ̄
(But you have to 
square both sides to 
make this about 
variances.)
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Estimating variance from sample means
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To see that we can use sample means to estimate the variance of a 
population, we need to see the full picture of where sample means come from:

p
o

p
u

la
ti

o
n

x ̄= 175

We start with a 
population. I’ll use 
our old friend height:

x ̄= 178x ̄= 172

We draw 3 samples 
of 10 from this 
population. Like an 
experiment with 3 
conditions!

The means of these 
samples came from 
the distribution of 
sample means - the 
sampling distribution 
of the mean!

So, we can rework 
the equation to 
calculate the 
population variance 
from the squared 
standard error:

n=σ2 σ2 x ̄

µ = 175

σ2 = 10

µ = 175

σ2 = 100

x ̄
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Estimating variance from sample means
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To see that we can use sample means to estimate the variance of a 
population, we need to see the full picture of where sample means come from:

p
o

p
u

la
ti

o
n

x ̄= 175

We start with a 
population. I’ll use 
our old friend height:

x ̄= 178x ̄= 172

We draw 3 samples 
of 10 from this 
population. Like an 
experiment with 3 
conditions!

The means of these 
samples came from 
the distribution of 
sample means - the 
sampling distribution 
of the mean!

So, we estimate the 
variance of the 
sampling 
distribution of the 
mean using the 
sample means:

s2 =
k-1

∑(xī - xḠ)2

x ̄

Then plug it into 
the relationship:

n=σ2 σ2 x ̄

The result is an 
estimate of σ2 from 
the sample means!

µ = 175

σ2 = 10

µ = 175

σ2 = 100

x ̄



Two ways to estimate variance for two or more 
samples
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Method 1: For two or more samples, we can first calculate the sample 
variances:

s2 =
(x1 - x)̄2 + (x2 - x)̄2 + … + (xn - x)̄2

n-1

Then pool the variance of each sample to get an even better estimate (this is a 
weighted mean):

Method 2: For two or more samples, we can use the sample means to 
calculate the population variance based on the relationship between the 
variance of the sampling distribution of the mean and the population variance:

s2 =
k-1

∑(xī - xḠ)2

x ̄ n=s2 s2 x ̄

s2 =
n-1

∑(xi - x)̄2

or

+s1
2 s2

2

(n1-1) + (n2-1)

(n1-1) (n2-1)
=2sp ntotal-k

∑ s i
2(ni-1)

=or 2sp

then:



Crucial fact: This second method only yields a 
good estimate if H0 is true!
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What is the H0 for three conditions?
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To create a hypothesis test around variance, we need to be clear about what 
our null hypothesis is. Our null hypothesis is that all three conditions come 
from populations with the same means and variances.

µ = 175

σ2 = 100

x ̄= 175 x ̄= 178x ̄= 172

µ = 175

σ2 = 100

We often take the thinking shortcut of saying “all 3 conditions come from the 
same population”. But we know they don’t come from the same population, 
because they are different conditions! So, our real H0 is that the three 
populations that they come from all have the same mean and variance.

µ = 175

σ2 = 100



What is the H0 for three conditions?
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Here are all (I think?) of the patterns of results that will yield a significant 
result in an ANOVA with three conditions. As you can see, at least one 
condition needs to be different from the other three.

And here is the null hypothesis:
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If H0 is true, our new/second method of 
estimating variance will be a good estimate

16

µ = 175

σ2 = 10

x ̄= 175 x ̄= 178x ̄= 172

µ = 175

σ2 = 10

µ = 175

σ2 = 10

Our new estimate will be a good estimate if H0 is true because the sampling 
distributions for each population will also be identical:

µ = 175

σ2 = 100

µ = 175

σ2 = 100

µ = 175

σ2 = 100

x ̄ x ̄ x ̄
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If H0 is true, our new method of estimating 
variance will be a good estimate

17

The thinking shortcut for this that it is as if they all come from the same 
population (same mean and variance), and therefore the same sampling 
distribution:

p
o

p
u

la
ti

o
n

x ̄= 175 x ̄= 178x ̄= 172

µ = 175

σ2 = 10

µ = 175

σ2 = 100

x ̄

I like to think of this 
single purple 
distribution as the 
three populations 
(green, red, blue) 
overlapping 
perfectly.



If H0 is false, our new method of estimating 
variance will be a bad estimate
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Crucially, if the three samples come from populations with different means, 
then the estimated variance will be larger than the variance of the 
population:

x ̄= 175 x ̄= 225x ̄= 125
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This is because 
the samples come 
from three 
different sampling 
distributions of 
the mean. So 
they will be 
spread out!

σ2 = 100

So, when we 
calculate the 
variance:

s2 =
k-1

∑(xī - xḠ)2

x ̄

Then plug it into 
the relationship:

n=σ2 σ2 x ̄

The result will be a 
much larger 
estimate of σ2. 
Here it is 25,000!
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So, two different universes lead to two 
different outcomes!
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If H0 is false, we get a large estimate

x ̄= 175 x ̄= 225x ̄= 125
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σ2 = 100
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x ̄= 175 x ̄= 178x ̄= 172

µ = 175

σ2 = 10

µ = 175

σ2 = 100

x ̄

If H0 is true, we get a good estimate

σ2 = 10x ̄

estimate = 90 estimate = 25,000



We can use this to turn variance into a test of 
the null hypothesis!



We can call variance “mean squares”
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Statistics likes to have lots of terms for the same thing. This is because of the 
history of the field. Here’s a new term for variance: mean squares

s2 = MS =
(x1 - x)̄2 + (x2 - x)̄2 + … + (xn - x)̄2

n-1

You can see where this name comes from. Variance is the sum of squares, 
divided by the degrees of freedom… so it is like a mean of the sum of squares.



Our new method is “between groups”
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Our new method of calculating variance uses sample means from three 
different groups. It is looking at the variability between groups, and using that 
variability to estimate the population variability. Therefore we call it mean-
squares-between:

s2 =
k-1

∑(xī - xḠ)2

x ̄ n=s2 s2 x ̄

MSB:
k-1

∑(xī - xḠ)2
n

Notice that the MSB equation has “n” in it. This is because it is a combination 
of the two equations we use in this method: the equation for the variance of 
the sampling distribution of the mean is plugged it into the equation that 
relates the variance of the sampling distribution of the mean to the variance of 
the population:

In this equation, k is the number of groups, and n is the sample size.



Equal sample sizes vs unequal sample sizes
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The formula we just built assumes that all of the groups (the conditions) have 
the same sample size. But this is not strictly necessary. We can use a specific 
n for each group like this:

MSB:
k-1

∑(xī - xḠ)2
n

Notice that one change is in the position of the n. This follows from the laws of 
summation — the equal sample size version could have had the n inside the 
summation too. I kept it outside to make the connection to the relationship 
between standard error and standard deviation very clear.

I will try to keep the sample sizes equal for all of the ANOVAs that we run in 
the homework and exam to keep things simple. But I want you to know that 
you don’t have to do that. You can have unequal sample sizes.

equal sample size

MSB:
k-1

∑ni(xī - xḠ)2

unequal sample size



Our previous method is “within groups”
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+s1
2 s2

2

(n1-1) + (n2-1)

(n1-1) (n2-1)
=MSW

Our pooled variance method calculates the variability within each group by 
looking at the raw scores in the samples. In other words, it is an estimate of 
the population variance based on the variability within each sample. So we call 
it mean-squares-within. Here is the equation for two samples:

We can use summation notation to expand this for any number of samples:

ntotal-k

∑ s i
2(ni-1)

=MSW

Here, ntotal is the sum of the sample sizes for all of the groups. And k is the 
number of groups. (And notice that we already have a different n for each 
group, so this equation works for both equal and unequal sample sizes.)



What counts as a “good” estimate?
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Remember, MSB is the interesting one. It will be a good estimate when H0 is 
true, and a bad estimate when H0 is false:

MSB
k-1

∑(xī - xḠ)2
n

But to know whether it is “good” or “bad”, we need to know the variance of the 
population. How do we do that? We use MSW!

ntotal-k

∑ s i
2(ni-1)

=MSW

MSW is always a good estimate of the variance. This is because we require that 
the conditions come from populations with equal variances when we run 
ANOVAs. We call this homogeneity of variance. It is an assumption of the 
test. That means it is a requirement.

=



Homogeneity of variance
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Homogeneity comes from the word homogenous, which is a fancy way of 
saying identical or the same kind. ANOVA assumes (and therefore requires) 
that the conditions all have homogenous variance. 
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x ̄= 175 x ̄= 178x ̄= 172

µ = 175
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If H0 is false, variance is equal.If H0 is true, variance is equal.

If all of the samples come from populations with the same variance, then 
pooling them together in MSW will give a really good estimate of the population 
variance!



The ANOVA equation
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ANOVA puts these two ideas together. MSB varies based on H0. It is the core of 
our test. MSW is always a good estimate, so we use it to scale MSB - to tell us 
what a good estimate of the variance is. That means we divide MSB by MSW.

F =
MSW

MSB

We call the resulting statistic “F” in honor of Ronald Fisher, who developed the 
ANOVA method. 

Even before we look at F in detail, you can already see what it does:

If H0 is true, MSB will be a good estimate, and MSW will be a good estimate 
(because it always is), therefore F will be roughly 1 because the numerator 
and denominator will be roughly equal.

If H0 is false, MSB will be large, while MSW will remain a good estimate. So F 
will be larger than 1 because the numerator will be larger than the 
denominator.



Putting the logic together
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ANOVA is a way to test experiments with 3 or more conditions.

It tests the H0 that all conditions come from populations with the same means 
and variances.

It works because one way of estimating variance, called MSB, is only a good 
estimate of the population variance when H0 is true. When H0 is false, it gets 
large. But the other way of estimating variance, called MSW, is always a good 
estimate.

F =
MSW

MSB
So, if we put these two estimates in a ratio like this, 
called an F-ratio or F-statistic, we get a test of H0. F will 
be 1 when H0 is true, and larger than 1 when H0 is false.

From here, we can do what we always do in statistics! We can figure out what 
the distribution of F looks like. We can find critical F-statistics for any given 
experiment. We can calculate an F for a real experiment. We can calculate a p-
value from that F. We can plan experiments by figuring out the sample size for 
good statistical power. And much more.

But we will do that next time. Today was just about the logic.


