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Purpose: Given the growing prominence of computational
modeling in the acquisition research community, we
present a tutorial on how to use computational modeling to
investigate learning strategies that underlie the acquisition
process. This is useful for understanding both typical and
atypical linguistic development.
Method: We provide a general overview of why modeling
can be a particularly informative tool and some general
considerations when creating a computational acquisition
model. We then review a concrete example of a
computational acquisition model for complex structural
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knowledge referred to as syntactic islands. This includes
an overview of syntactic islands knowledge, a precise
definition of the acquisition task being modeled, the modeling
results, and how to meaningfully interpret those results
in a way that is relevant for questions about knowledge
representation and the learning process.
Conclusions: Computational modeling is a powerful tool
that can be used to understand linguistic development. The
general approach presented here can be used to investigate
any acquisition task and any learning strategy, provided
both are precisely defined.
This article is intended as a brief tutorial on using
computational modeling in an informative way,
specifically applied to problems in language acqui-

sition. Because computational modeling is a tool growing
in prominence in the acquisition research community, we
highlight what it is especially useful for: investigating the
strategies that underlie the acquisition process. We then
present a general overview of the relevant considerations
when modeling, and we provide a concrete example of how
to apply it to yield results pertinent to researchers investi-
gating acquisition—whether they are interested in how it
typically succeeds or the different ways in which it may be
delayed or break down completely. Our example study fo-
cuses on the acquisition of complex structural knowledge
often referred to as syntactic islands. We demonstrate how
computational modeling forces us to be explicit about all
the components in a syntactic island learning strategy and,
by doing so, provides a list of individual pieces that may be
further investigated. We believe that modeling results like
these will be useful both for basic cognitive science (e.g.,
contributing to debates between linguistic nativists and con-
structionists) and for clinically oriented cognitive science
(e.g., providing a comparison point for theories of atypical
development).
A Tool for Language Acquisition
Broadly speaking, the goal of the language acquisi-

tion field is to determine the learning strategies that chil-
dren use to acquire their native language. Like all sciences,
there are two general steps to this process: theory specifica-
tion and theory evaluation. Theory specification involves
constructing theories that could potentially solve the learn-
ing problem that children face. Theory evaluation involves
comparing the predictions of competing theories with data
from children to determine which theory is more likely to
be correct. Historically, these two steps have been conducted
via human theorizing (specification) and experimental re-
search (evaluation), both of which are necessary components
for discovering how it is that children acquire language.
We believe that computational modeling is additionally
beneficial to both theory specification and theory evaluation
in ways that are complementary to classic human theorizing
and experimental work. Therefore, this is a core benefit of
computational modeling.

On the specification side, computational modeling
can allow us to construct theories of language learning
Disclosure: The authors have declared that no competing interests existed at the time
of publication.
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strategies that are explicit about all the necessary compo-
nents. This is not a trivial capability—it often turns out that
learning theories that seem explicit to humans do not actu-
ally specify all the details necessary to implement the strate-
gies they describe. A computational model highlights where
the gaps are, because a computer program can only imple-
ment a learning strategy in which every relevant detail is
specified (Kol, Nir, & Wintner, 2014; Pearl, 2014). Therefore,
even if a learning theory has already been developed, a
computational model provides a way to flesh out that the-
ory and to identify the necessary components.

On the evaluation side, a computational model pro-
vides a testing ground for a fleshed out learning theory,
because it sets up a particular learning scenario and imple-
ments the theory’s learning strategy within that learning
scenario. If the learning strategy succeeds, this is support
for the strategy instantiated that way; if it fails, this is an ar-
gument against that instantiation’s validity. We emphasize
that a computational model of a learning strategy provides
a particular kind of evidence—namely, that this instantia-
tion of the strategy can work. It does not mean this is the
only instantiation (or only strategy) that can work. Also, if
the instantiation of the learning strategy fails, this does not
mean that the strategy in general has been proven to fail,
because it is possible that a different instantiation might
succeed. Therefore, it is important to interpret computational
modeling findings appropriately.

Still, with this information in hand, experimentalists
can also conduct their own evaluations of the learning theo-
ries by investigating the necessary strategy components as
well as any predictions generated by the modeled learning
strategy (e.g., the order of acquisition for different pieces of
linguistic knowledge or the developmental trajectory of
some piece of knowledge). If the strategy components seem
to be utilized by children of the appropriate age and the
model’s predictions match observable behavioral data, then
this provides additional empirical support for the learning
theory that proposed that strategy.

What Makes a Useful Computational Model?
In general, a complete computational model must

contain an explicit specification of the components of the
acquisition process. Drawing from several recent discus-
sions of the acquisition process (Lidz & Gagliardi, 2015;
Omaki & Lidz, 2015; Pearl, 2014; Pearl & Mis, 2011, in
press; Pearl & Sprouse, 2013b), we suggest the following
components:

1. Initial state: What knowledge, abilities, and learning
biases does the learner already have?

2. Encoding: How does the modeled child perceive the
input?

3. Intake: What part of the perceived input does the
modeled child use for learning?

4. Learning period: How long does the modeled child
have to learn?
Downloaded from: https://pubs.asha.org University of Connecticut on 07/11/2
5. Inference: How are updates to the modeled child’s
internal representation made?

6. Iteration: How does the internal representation
affect subsequent encoding, intake, and observable
behavior?

7. Target state: What does it mean for the modeled child
to succeed at learning?

Crucially, we want each of these components to be
cognitively plausible for children. To that end, we can draw
on prior theoretical, corpus, and experimental research to
determine what is realistic. For example, theoretical research
can help define the initial state and the target knowledge
state as well as proposals for the inference and iteration
processes. Corpus research can help define the set of data
available to children. Experimental research can help deter-
mine what abilities the learner has in the initial state, how
the child’s developing cognitive abilities affect data en-
coding and intake, how long the learning period is, what
plausible inference and iterations procedures are for the
modeled child’s age, what behavior children display when
they are in the process of acquiring the target knowledge
(i.e., the developmental trajectory), and what behavior chil-
dren display when they have acquired the target knowledge.

We note that making each component “cognitively
plausible” is still nontrivial, despite all this information. For
example, consider the more general issue of the learner’s
input, which encompasses both the encoding and intake
components. For some acquisition problems (such as the
syntactic islands problem we discuss below), data about the
distribution of child-directed utterances are sufficient, and
a reasonable approximation of this input is available through
resources such as the CHILDES database (MacWhinney,
2000). However, for other acquisition problems, richer in-
put data may be required (e.g., visual scenes paired with
utterances), and such data may not be available in large
enough quantities to easily estimate a learner’s input. For
this reason, one important contribution to modeling work
is the creation of this kind of richer data set as well as
ways to automatically generate it from existing resources
(Matusevych, Alishahi, & Vogt, 2013).

The learning period component can also present a
plausibility challenge. For some acquisition problems, we
have empirical data about exactly what children know
when; for others, we may only have the typically developing
adult knowledge state or an atypically developing learner’s
final knowledge state. In the latter case, it may be difficult
to determine what should count as a plausible learning pe-
riod. Because modeling requires us to be explicit, modelers
may have to simply make an educated guess about how
long might be plausible for learning until empirical data do
become available.

The inference component also raises practical con-
siderations, in addition to plausibility considerations. For
many acquisition problems, the empirical data may be
compatible with many different inference algorithms (e.g.,
Bayesian inference, neural networks, reinforcement learning).
Pearl & Sprouse: Computational Modeling 741
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1Although there is clearly an upper bound on the number of words
and/or clauses that an English speaker can keep track of during
language processing, this restriction appears to be based on the limited
nature of human working memory capacity rather than an explicit
structural restriction on the length of wh-dependencies in English.
For some acquisition problems, the choice of inference
algorithm may be more a matter of taste, as different algo-
rithms have different benefits and drawbacks, whereas
for other problems, it may be that certain algorithms lend
themselves more naturally to the task (e.g., see Pearl &
Goldwater, in press, for discussion of why Bayesian infer-
ence may be a natural fit for several language acquisition
tasks). As we see in the model discussed below for syntactic
island constraints, a very simple inference algorithm was
sufficient for implementing the proposed learning strategy.

The target state can also present practical challenges,
as we consider what exactly the learner ought to learn
and what behavior that learner ought to produce to demon-
strate that the learner has indeed learned what he or she
ought to have learned. If we have detailed empirical data
available about the stages of learning, this can be a reason-
able comparison for the learner’s output—we can try to
capture the appropriate learning trajectory (e.g., Alishahi &
Stevenson, 2008). However, if we do not, we may need to
rely on other measures of what counts as acquisition success
(Pearl, 2014). Perhaps the learner should reach adult-like
knowledge and so we can use behavior correlated with
adult knowledge as a metric for learner behavior (e.g., Pearl
& Sprouse, 2013a, 2013b). Perhaps we have a measure of
behavior at one particular age (when the child may not yet
have the adult knowledge), and we can use that behavior as
a metric of what the learner should have learned by that
age (e.g., Pearl & Mis, in press). Perhaps we know that
the target knowledge will be used to bootstrap future acqui-
sition processes, and so we should measure how useful
the learner’s acquired knowledge is, regardless of whether
it matches the adult knowledge (e.g., L. Phillips & Pearl,
2014a, 2014b, in press).

In general, it is important to empirically and psycho-
logically ground the choices for the different components
whenever possible. This increases confidence that the com-
putational model we create is informative about how
humans solve the language acquisition problem. When we
make choices that are not derived from empirical data,
we must be prepared to explain why they are reasonable
choices and what impact they have on the acquisition pro-
cess. For more detailed discussion of when, why, and how
to computationally model language acquisition more gener-
ally, we recommend acquisition modeling overviews by
Pearl (Pearl, 2010; Pearl & Goldwater, in press), Alishahi
(Alishahi, 2010; Freudenthal & Alishahi, 2014), and Räsänen
(2012), among others.

Still, if all these learning task components are defined
explicitly (which may be easier to do for some acquisition
tasks than others), and the model succeeds at reaching the
defined target state, we can then explore the internal rep-
resentations constructed by the modeled child to understand
exactly why it succeeds. Similarly, if a modeled learning
strategy fails, we can inspect the internals of the modeled
child to understand exactly why it failed. This means that
computational modeling has the additional benefit of pro-
viding information that may not be accessible in studies
of actual children, in which we can only observe success or
742 Journal of Speech, Language, and Hearing Research • Vol. 58 • 7
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failure without seeing inside the child’s mind to understand
why that success or failure occurred.

In the next section, we demonstrate how to leverage
empirical results to define each of these learning task com-
ponents for a particular acquisition task involving syntactic
island constraints. We focus on syntactic island constraints
because they are a complex linguistic phenomenon that has
been at the center of multiple debates in the linguistics liter-
ature, and so they are a good demonstration of the benefits
of computational modeling. In what follows, we attempt to
illustrate the construction of a modeled learner (a) who uses
the data children use (b) in a way that children might use
those data (c) to learn what children learn from those data
(d) in the same amount of time children have to learn. When
we have a learning strategy that successfully accomplishes
this, we have a viable option for how the acquisition process
could typically occur for that specific acquisition task. It
is at that point that we can examine the components of the
successful strategy to help us understand why the strategy
works as it does, and when it might fail.

Modeling Syntactic Island Acquisition
A Brief Introduction to Syntactic Island Effects

One of the most interesting aspects of human lan-
guage structure is that there can be relationships between
linguistic elements that are not next to each other (some-
times referred to as long-distance dependencies). English
wh-questions are an excellent example of this. For instance,
in Example 1a, we understand the wh-word what as the
thing that Jack is thinking, even though it does not appear
after the verb think, where the object of think would typi-
cally appear. We indicate the position where what is under-
stood with an underscore, which is often called the gap
position. Therefore, Example 1a shows that there is a long-
distance dependency between what and the gap where what
is understood. One defining characteristic of long-distance
wh-dependencies is that they appear to be unconstrained by
length (Chomsky, 1965; Ross, 1967), as shown in Exam-
ples 1b–1d. The distance between the wh-word and where it
is understood can be increased by any number of words or
clauses.1
40–753

019, Te
. What does Jack think __what?

. What does Jack think that Lily said __what?

. What does Jack think that Lily said that Sarah
heard __what?
. What does Jack think that Lily said that Sarah
heard that the goblins stole __what?
Still, although wh-dependencies are unconstrained
by length, they are not entirely unconstrained. Linguists
have observed that if the gap position of a wh-dependency
• June 2015
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appears within certain syntactic structures, such as those
in square brackets in Example 2, the resulting utterance
will be unacceptable (Chomsky, 1965, 1973; Huang, 1982;
Ross, 1967; among many others).2 These structures are
known as syntactic islands because of a metaphor in which
wh-questions are formed by moving the wh-word from the
position where it is understood to the front of the utterance,
and these structures prevent that movement because they
are islands that cannot be moved out of (Ross, 1967).
Therefore, the explanation for the unacceptability of these
utterances is that the long-distance dependencies cross a
syntactic island, which is not allowed.
(2)

2Unac
front o

Do
Some examples of island-crossing dependencies, with
island structures in brackets
a. *What did you make [the claim that Jack

bought __what]?
b. *What do you think [the joke about __what] was

hilarious?
c. *What do you wonder [whether Jack bought __what]?
d. *What do you worry [if Jack buys __what]?
Figure 1. Abbreviated phrase structure tree, with phrase structure
node labels in bold that are relevant for characterizing the
wh-dependency in Who did Jack think that the story about
penguins amused? CP = complementizer phrase; IP = inflectional
phrase; NP = noun phrase; VP = verb phrase.
Island effects are particularly interesting from the
perspective of language acquisition for two reasons. First,
there is cross-linguistic variability in syntactic island effects
(e.g., Engdahl, 1980; Hagstrom, 1998; Huang, 1982; Lasnik
& Saito, 1984; Rizzi, 1982; Torrego, 1984), which means
that children must learn what the syntactic islands are for
their language. This is equivalent to learning which long-
distance dependencies are acceptable in their language. We
present a model of a learning strategy for doing this, em-
pirically evaluating its performance on English syntactic
islands. Second, the differences between sentences containing
allowed dependencies and sentences containing island-
crossing dependencies are, in many cases, difficult to char-
acterize without making reference to relatively abstract
syntactic structure. This has led many syntacticians to pos-
tulate relatively complex, abstract constraints to capture is-
land effects in the adult grammar (e.g., Chomsky, 1986),
which has, in turn, led many acquisition researchers to pos-
tulate domain-specific, innate knowledge to explain the
acquisition of island effects by children. This makes island
effects an ideal case study for exploring the power of com-
putational modeling with respect to (a) complex learning
problems and (b) long-standing debates in cognitive science
(i.e., debates about the role of domain-specific, innate knowl-
edge in language acquisition).
Defining the Syntactic Islands Acquisition Task
First, we must precisely define the specific acquisition

task using the components from the What Makes a Useful
Computational Model section: the initial state, encoding,
data intake, learning period, inference, iteration, and target
state.
ceptable utterances are traditionally indicated with an asterisk in
f them.
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The Initial State
Because the initial state is composed of the knowl-

edge, abilities, and biases the learner already has, this is
where the learning strategy plays a large role. In particular,
to implement a particular learning strategy, the learner
needs to draw on his or her existing knowledge, abilities,
and biases. Therefore, to know what is required in the
learner’s initial state, we first need to describe the learning
strategy itself in enough detail to know what it depends on
for implementation.

The learning strategy developed by Pearl and Sprouse
(2013b) involves the learner using certain pieces of phrase
structure to define a wh-dependency, in particular the
phrase structure nodes that contain the dependency (which
they call container nodes). A phrase structure node contains
the dependency if the path from the gap to the wh-word
must pass through the phrase structure node. To see this
demonstrated, consider the utterance Who did Jack think
that the story about penguins amused? and the phrase struc-
ture tree in Figure 1. Starting at the gap, the path must
move up through the embedded verb phrase (VP), the em-
bedded inflectional phrase (IP), the complementizer phrase
(CP), the main VP, and the main IP before it finally reaches
a phrase structure node that has the wh-word who as its
child. These are the container nodes for this dependency
(also shown in the bracket structure in Example 3a).

The wh-dependency can be characterized as the se-
quence of container nodes from the wh-word to the gap.
We also include the labels start and end in the sequence to
indicate the beginning and ending of the dependency, as
shown in Example 3b. One important component of the
characterization is how specific the container nodes are.
They could just be the basic container nodes themselves,
such as CP and VP. However, they could also be described
Pearl & Sprouse: Computational Modeling 743
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by what word is the head of the phrase for the container
node, such as the complementizer that for the CP or the verb
think for the main clause VP—that is, they could be subcate-
gorized and so represented as CPthat or VPthink. Pearl and
Sprouse (2013b) investigated a version of dependency char-
acterization that used basic nodes except for CP, which was
subcategorized by the complementizer (Example 3b).

The learner then extracts a certain kind of informa-
tion from every dependency in the input by breaking the
container node sequence characterizing the dependency into
a sequence of trigrams (Example 3c). It is the frequency
of these smaller pieces that the learner tracks. Therefore,
after encountering the utterance Who did Jack think that
the story about penguins amused?, the learner has observed
one instance of each of the five container node trigrams
that comprise the wh-dependency. After encountering
many wh-dependencies, the learner has a collection of fre-
quencies for each of the container node trigrams observed.
It is important to note that this is all the learner needs to
learn.3
(3)

3We no
track f
literatu
Aslin,
(2006);

744

Do
Who did Jack think that the story about penguins
amused __who?
a. Phrase structure nodes containing the wh-dependency:

Who did [ IP Jack [VP think [CP that [ IP the story
about penguins [VP amused __who]]]]]?

b. Container node characterization of wh-dependency
with CP subcategorization:
start–IP–VP–CPthat–IP–VP–end

c. Trigrams of container nodes ∈
Trigrams start–IP–VP–CPthat–IP–VP–end:

= start–IP–VP
IP–VP–CPthat

VP–CPthat–IP
CPthat–IP–VP

IP–VP–end
(5)
How then does a learner come to have judgments
about a dependency? Whether the dependency has been
encountered before, the learner follows similar steps to gen-
erate a judgment:

1. Characterize the dependency as a sequence of
container nodes.

2. Identify the container node trigrams comprising the
dependency.

3. Combine the frequency information from each
container node trigram in the dependency to generate
a probability for that dependency.

The dependency probability can then be translated
into a judgment: More probable dependencies are judged
te that the empirical support for young children’s ability to
requencies in the input comes from the extensive experimental
re on children’s implicit statistical learning abilities: Saffran,
and Newport (1996); Gomez and Gerken (1999); and Mintz
among others.
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more acceptable, whereas less probable dependencies are
judged less acceptable.

The particular way that Pearl and Sprouse (2013b)
implemented the third step of combining the frequency in-
formation from the trigrams was to use the product of the
individual trigram probabilities, as shown in Example 4.
A trigram’s probability is calculated by dividing the trigram
frequency observed from the learner’s input by the total
number of trigrams observed in the learner’s input.4

(4) p(Who did Jack think that the story about penguins
amused __who?)

¼
Y

trigram∈Trigramsstart�IP�VP�CPthat�IP�VP�end
p trigramð Þ

¼ p start� IP� VPð Þ � p IP� VP� CPthatð Þ
� p VP� CPthat � IPð Þ � p CPthat � IP� VPð Þ
� p IP� VP� endð Þ ¼ # start� IP� VP

total trigrams

� # IP� VP� CPthat

total trigrams
� # VP� CPthat � IP

total trigrams

� # CPthat � IP� VP
total trigrams

� # IP� VP� end
total trigrams

This strategy relies on the learner being able to do a
number of things. First, to identify the container nodes that
describe a dependency, the learner must be able to recog-
nize the appropriate phrase structure in an input utterance.
Second, to characterize a wh-dependency as a sequence of
container nodes, with the appropriate level of specificity
(e.g., CP vs. CPthat), the learner must recognize the container
nodes and be able to use them. Third, the learner must know
to break the container node sequence that characterizes a
dependency into trigrams and to track the frequency of these
container node trigrams in the input. Fourth, the learner
must know to combine the container node trigram infor-
mation to generate a probability for the dependency and be
able to do so successfully. These comprise the initial state
of the learner, shown in Example 5.
4There
called
probab
the sm
observ
case th
input y
calcula

40–753
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Knowledge, abilities, and biases in the learner’s initial
state
a. Phrase structure
(i) Knowledge: Know phrase structure.
(ii) Ability: Successfully recognize phrase structure

of utterances.
b. Container nodes
(i) Bias: Characterize wh-dependencies using

container nodes.
is a small additional step in calculating a trigram’s probability
smoothing, which ensures that no trigram actually has zero
ility, even if it has never been observed in the input. In essence,
oothing step allows trigrams that have never before been
ed to have a very small nonzero probability anyway, just in
ey are acceptable but simply have not shown up in the learner’s
et. See Pearl and Sprouse (2013b) for details of the smoothing
tion.
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Do
(ii) Ability: Successfully recognize container nodes.
(iii) Ability: Successfully characterize dependencies

using container nodes.
c. Container node trigrams

(i) Bias: Break container node sequences into
trigrams.

(ii) Ability: Successfully break container node
sequences into trigrams.

(iii) Bias: Track frequency of container node
trigrams.

(iv) Ability: Successfully track frequency of
container node trigrams.

d. Generating wh-dependency judgments
(i) Bias: Use container node trigram probabilities

to generate judgments.
(ii) Knowledge: How to combine trigram

probabilities the right way.
(iii) Ability: Successfully combine trigram

probabilities.
5For more information, see http://www.socsci.uci.edu/~lpearl/CoLaLab/
CHILDESTreebank/childestreebank.html.
6Interestingly, when Pearl and Sprouse (2013b) investigated adult-directed
conversational speech, they discovered a very similar distribution of
wh-dependencies, consisting of mostly main-clause object (73.0%) and
main-clause subject (17.2%) wh-dependencies. This demonstrates a
rare case when child-directed speech and adult-directed speech do not
appear to differ in their distribution of some linguistic attribute.
7This is a simplifying assumption, because no experimental studies
currently exist about when children acquire the four specific syntactic
islands that Pearl and Sprouse (2013b) investigated. Notably, this means
Pearl and Sprouse’s modeling results can be used to predict what
experimental studies will find about the trajectory of acquisition for
these specific syntactic islands.
Data Encoding and Data Intake
The data the learner actually uses are some subset of

the data available in the child’s input, and this subset is de-
fined by both the learner’s developing cognitive abilities and
the biases in the learner’s initial state. First, however, it is
useful to identify what children’s input actually looks like.

The CHILDES database (MacWhinney, 2000) is an
excellent resource for the input children typically encounter,
as it provides transcripts and recordings of naturalistic
interactions between children and their caretakers (among
other types of data). The data that come from American
English are most relevant for the English syntactic island ef-
fects that Pearl and Sprouse (2013b) investigated, and so
they examined the transcripts of American English speech
directed at children of a variety of ages. This served as a
reasonable sample of the linguistic data available to children.
In particular, Pearl and Sprouse used a sample of 101,838
child-directed utterances aggregated from several commonly
used American English corpora in the CHILDES database:
the Adam and Eve corpora by Brown (1973), Valian’s
(1991) corpus, and Suppes’s (1974) corpus. Collectively,
these utterances were directed at 24 children between the
ages of 1;6 (years;months) and 5;2.

Therefore, this is likely a representative enough sam-
ple of the linguistic input for learning about syntactic
islands. Now, how does the modeled learner encode these
data? Put simply, just because the information is available
does not mean the child will be able to encode all that in-
formation, or encode what is there correctly, because of im-
mature or atypically developing cognitive abilities (Lidz &
Gagliardi, 2015; Omaki & Lidz, 2015). Pearl and Sprouse
(2013b) assumed that the modeled learner had sufficient lin-
guistic knowledge and cognitive resources to recognize the
syntactic structure of the utterances encountered (i.e., the
learner can construct the phrase structure for an utterance).
They also assumed that the modeled learner had sufficient
working memory to be able to identify the gap associated
with any dependency.
wnloaded from: https://pubs.asha.org University of Connecticut on 07/11/2
Now, what is the modeled learner’s intake? The
data intake for learning about syntactic islands, on the
basis of the learning strategy implemented in the learner’s
initial state, is the part of the data deemed relevant for
syntactic islands. Therefore, the modeled learner focuses
on the structure of the wh-dependencies in the child-
directed speech utterances, because the container node tri-
grams are what is being tracked, and those characterize
wh-dependencies (Example 5b). That is, each wh-dependency
is perceived by the learner as the sequence of container nodes
that characterize it.

Pearl and Sprouse (2013b) discovered that approximately
20% of their linguistic sample contained wh-dependencies
(20,923 of 101,838). They derived the container node char-
acterization of these dependencies from structurally parsed
annotations of the wh-dependencies, available as part of
the CHILDES Treebank.5

Notably, it turned out that most of the wh-dependencies
(89.5%) were of two types: those with the gap in the main
clause object such as What did she see? (container node
sequence: start–IP–VP–end = 76.7% of wh-dependencies)
and those with the gap in the main-clause subject such as
Who saw it? (container node sequence: start–IP–end = 12.8%
of wh-dependencies).6 Still, the remaining 10.5% of the
wh-dependencies included 24 different dependency types,
so there are a variety of wh-dependencies in the learner’s
data intake.
The Learning Period
How long the learner has to learn can be translated

into how much data the learner encounters before learning
is complete. Hart and Risley (1995) determined that Amer-
ican children in their samples were exposed to approxi-
mately one million utterances between birth and 3 years of
age, so this provides an empirical basis for the modeled
learner of Pearl and Sprouse (2013b). In particular, Pearl
and Sprouse assumed that intuitions about syntactic islands
are acquired in a 3-year period, such as between 2 and 5 years
of age, on the basis of available experimental studies
(de Villiers & Roeper, 1995; de Villiers, Roeper, Bland-
Stewart, & Pearson, 2008; Goodluck, Foley, & Sedivy, 1992;
Roeper & de Villiers, 2011).7 Therefore, they assumed that
the modeled learner would encounter one million utterances
Pearl & Sprouse: Computational Modeling 745
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(6)

(7)

(8)

(9)
distributed similarly to the CHILDES-based sample of
American English, which meant that approximately 20%
(200,000 utterances) would contain wh-dependencies.
Because only wh-dependencies are relevant for the mod-
eled learner, this means the learning period is therefore
200,000 wh-dependencies, and these are the data that the
modeled learner applies the learning strategy to. Impor-
tantly, these 200,000 data points are encountered with the
same relative frequency as the CHILDES data sample in-
dicated, so approximately nine out of 10 are main-clause
object or main-clause subject dependencies, whereas the rest
are distributed across the remaining 24 wh-dependency types.

Inference and Iteration
The inference process for the modeled learner defines

how updates to the learner’s internal representation are
made, on the basis of the data intake. For the syntactic
islands learning strategy, the internal representation is sim-
ply the frequencies of the container node trigrams, because
these are what the learner updates when encountering the
input. These are also what the learner draws on to create
judgments about new dependencies, and so they represent
the part of the iteration process that relates to the learner’s
observable behavior. The other two parts of iteration,
which relate to how the updated internal representation
affects subsequent encoding and intake, are not affected,
because neither encoding nor intake depend on the container
node trigram frequencies.

The Target State
Now, what is the learner supposed to learn? Although

we do not have experimental data indicating the trajectory
of development for the four syntactic islands of interest,
we do have data demonstrating adult knowledge of these
syntactic islands. This provides the ultimate target state of
acquisition.

Sprouse, Wagers, and Phillips (2012) collected for-
mal acceptability judgments from 173 participants for the
four island types in Example 2 using the magnitude estima-
tion task: Complex Noun Phrase (NP) islands (Example 6d),
(simple) Subject islands (Example 7d), Whether islands
(Example 8d), and (conditional) Adjunct islands (Example 9d).
Notably, the acceptability judgments not only provide a
demonstration of target knowledge but also offer a concrete
set of behaviors that a modeled learner should aim to rep-
roduce. This allows us to match the modeled learner’s
output to adult linguistic output. In particular, Pearl and
Sprouse (2013b) compared the wh-dependency judgments
generated by the modeled learner against the acceptability
judgments generated by American English adults.

Sprouse et al. (2012) were very careful to control the
acceptability judgment collection, and they used a (2 × 2)
factorial definition of each island effect (shown in Exam-
ples 6–9) that controlled for two salient properties of utter-
ances that crossed islands, like those in Example 2. First,
these utterances contained an embedded-clause dependency
(EMBEDDED), rather than a matrix-clause dependency
(MATRIX; in syntax, matrix is a technical term for main
746 Journal of Speech, Language, and Hearing Research • Vol. 58 • 7
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clauses). Second, these utterances contained a syntactic is-
land structure (ISLAND), as opposed to not containing one
(NON-ISLAND). Therefore, four different stimuli types could
be created that separated the individual contributions of
these two factors.
40–753
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Complex NP islands
a. Who __ claimed that Lily forgot the necklace?

MATRIX | NON-ISLAND

b. What did the teacher claim that Lily forgot __?
EMBEDDED | NON-ISLAND

c. Who __ made the claim that Lily forgot the necklace?
MATRIX | ISLAND

d. *What did the teacher make the claim that Lily
forgot __?
EMBEDDED | ISLAND

Subject islands
a. Who __ thinks the necklace is expensive?

MATRIX | NON-ISLAND

b. What does Jack think __ is expensive?
EMBEDDED | NON-ISLAND

c. Who __ thinks the necklace for Lily is expensive?
MATRIX | ISLAND

d. *Who does Jack think the necklace for __ is
expensive?
EMBEDDED | ISLAND

Whether islands
a. Who __ thinks that Jack stole the necklace?

MATRIX | NON-ISLAND

b. What does the teacher think that Jack stole __?
EMBEDDED | NON-ISLAND

c. Who __ wonders whether Jack stole the necklace?
MATRIX | ISLAND

d. *What does the teacher wonder whether Jack stole __?
EMBEDDED | ISLAND

Adjunct islands
a. Who __ thinks that Lily forgot the necklace?

MATRIX | NON-ISLAND

b. What does the teacher think that Lily forgot __?
EMBEDDED | NON-ISLAND

c. Who __ worries if Lily forgot the necklace?
MATRIX | ISLAND

d. *What does the teacher worry if Lily forgot __?
EMBEDDED | ISLAND
The factorial definition of island effects treats the
unacceptability of the island-crossing dependencies in
Examples 6d–9d as a superadditive effect of the two factors
(an EMBEDDED dependency and the presence of an ISLAND

structure in the utterance). In particular, an island is ap-
parent when there is additional unacceptability that arises
beyond the dependency being an embedded clause dependency
and beyond the island structure being present in the utter-
ance. The presence of a syntactic island effect (which can
be thought of as implicit knowledge of syntactic islands)
then becomes visually salient: If the acceptability of the
four stimuli types for each island (as indicated by their
z scores) is plotted on an interaction plot, the presence of a
• June 2015
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Figure 2. Experimentally derived acceptability judgments for the four island types (N = 173) from Sprouse et al. (2012). NP = noun phrase.

8The Base 10 logarithm was used by Pearl and Sprouse (2013b),
but the natural logarithm would also accomplish the same goal of
scaling the probabilities appropriately. The important aspect is the
transformational scaling property of the logarithm, rather than the
particular base of the logarithm.
syntactic island appears as two nonparallel lines (see Figure 2)
because of the additional unacceptability that arises for
the island-crossing dependency. This interaction is also
statistically significant. In contrast, the lack of a syntactic
island appears as two parallel lines and results in no sig-
nificant statistical interaction, as the unacceptability of the
utterance is completely explainable by the summed effects
of it being an embedded clause dependency and having
an island structure in it. Notably, Sprouse et al. (2012)
found superadditivity (i.e., nonparallel lines and a statisti-
cally significant interaction) for all four islands investigated,
as shown in Figure 2. This demonstrates the implicit knowl-
edge about these four syntactic islands that adults possess.

Therefore, this is the target behavior we would like
the modeled learner to exhibit as well, to demonstrate
that it too has implicit knowledge of these four syntactic
islands. The way it can demonstrate this target behavior
is by assigning probabilities to each of the stimuli for
the four island types after it completes the learning period,
on the basis of the characterizations of the utterances’
wh-dependencies. For example, for the Complex NP stim-
uli, the modeled learner will generate a probability for the
utterances in Examples 6a–6d. These probabilities can then
be plotted on an interaction plot, just as the z scores of
human judgments were plotted in Figure 2. If we see super-
additivity in the modeled learner’s generated judgments, the
Downloaded from: https://pubs.asha.org University of Connecticut on 07/11/2
modeled learner has also demonstrated implicit knowledge
of these four syntactic islands.
Results
Figure 3 shows the modeled learner’s generated judg-

ments for each of the four island types after learning from
child-directed speech data, with the log probability on the
y-axis.

Pearl and Sprouse (2013b) used the logarithm8 of the
raw probabilities instead of the raw probabilities themselves
for several reasons. First, the raw probability calculated for
a wh-dependency is often a very small number because of
multiplying many probabilities together, such as 0.0000001,
and it can be visually taxing to compare very small num-
bers with a large number of decimal places. In contrast,
the logarithm of a small number is a negative integer—for
example, log(0.000001) = −6.

Second, the integer of the log probability repre-
sents the number of decimal places in the probability. For
Pearl & Sprouse: Computational Modeling 747
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Figure 3. Modeled learner results, after learning from child-directed speech data. NP = noun phrase.
example, log(0.000001) = log(10−6) = −6, whereas log(0.001) =
log(10−3) = −3. This means that logarithms allow us to quickly
compare the order of magnitude of the probability—for
example, a probability whose log is −6 is 1,000 times (103)
smaller than a probability whose log is −3.

Finally, addition of log probabilities is equivalent to
multiplication of the raw probabilities. This is handy when
considering a collection of trigram probabilities that we
need to multiply together, as the modeled learner needs to
do to generate a judgment about a wh-dependency (recall
the calculation in Example 4). We can simply add the log
probabilities together, which is often simpler than multiply-
ing raw probabilities with multiple decimal places.

As mentioned above, all log probabilities are negative
because raw probabilities are between 0 and 1, so the log
of a probability is between negative infinity and zero—for
example, log(0.000001) = −6, whereas log(1) = 0. This means
the numbers closer to zero are more positive and appear
higher on the y-axis; these represent structures judged by
the modeled learner as “more acceptable.” Numbers further
from zero are more negative and appear lower on the y-axis;
these represent structures judged as “less acceptable.”

As we can see from the interaction plots, the modeled
learner displays the qualitative target behavior indicating
implicit knowledge of these four syntactic islands: For each
748 Journal of Speech, Language, and Hearing Research • Vol. 58 • 7
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one, we observe superadditivity for the island-spanning
dependency. This indicates that the modeled learner, such
as the adults from Sprouse et al. (2012), has learned that
there is additional unacceptability that arises in these utter-
ances beyond simply having an embedded dependency and
having an island structure present in the utterance.

Still, there are noticeable differences between the ob-
served acceptability judgments from adults and the gram-
maticality preferences inferred by the model learner, despite
the qualitative similarity. For example, adults assign some
unacceptability to having an island structure present in
the utterance (i.e., the left-hand data point for the island
structure line in each of the plots in Figure 2 is lower than
the left-hand data point for the non-island structure line).
In contrast, the modeled learner does not assign some un-
acceptability to the presence of an island structure (all the
left-hand data points for the island structure lines overlap
the left-hand data points for the non-island structure lines
in Figure 3). This is because actual acceptability judgments
are based on dozens of factors that are not included in this
model, such as lexical item choice, semantic probability,
and processing difficulty (Cowart, 1997; Keller, 2000; Schütze,
1996; Sprouse, 2009). The grammaticality inferred by this
modeled learner would constitute only one factor among
many that affect acceptability, though it is likely a very large
40–753 • June 2015
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factor because the qualitative pattern emerges so distinctly.
Therefore, this is why we only look for qualitative similarity
between the modeled results and human judgment data
rather than looking for an exact quantitative fit. Because
the qualitative behavioral pattern is in fact there, we inter-
pret this to mean that the target knowledge adults possess
about these four syntactic islands is learnable from realistic
child-directed speech data, and the modeled learning strategy
demonstrates one way to accomplish this.

Interpreting the Model Results
As mentioned in the introduction, one of the most

useful aspects of computational modeling is its explanatory
power: When we find a learning strategy that works, we
can look to see precisely why it works. Here, Pearl and
Sprouse (2013b) discovered a learning strategy for syntactic
islands that involves characterizing wh-dependencies using
sequences of container nodes. Now, why does it work?

Crucially, for each of the island-spanning dependencies,
there is at least one extremely low probability container node
trigram in the container node sequence characterizing the
dependency (Example 10; PP = preposition phrase). These
trigrams are assigned low probabilities because these trigrams
are never observed in the input.9 Note that some trigrams are
low probability because of being rarely encountered in the
child-directed input (e.g., CPthat–IP–VP)—but, more impor-
tant, this is still more than never. For example, even though
CPthat–IP–VP rarely appears, it does appear, and so it is
assigned a probability that is substantially nonzero. This con-
trasts with each of the trigrams listed in Example 10.
(10)

(11)

9It is o
these p

10In fact, this is intuitively what the subjacency condition captured

Do
Container node trigram sequences for island-spanning
wh-dependencies
a. Complex NP

(i) *What did [ IP the teacher [VP make [NP the
claim [CPthat that [ IP Lily [VP forgot __]]]]]]?

(ii) start–IP–VP–NP–CPthat–IP–VP–end
(iii) Low probability:

VP–NP–CPthat

NP–CPthat–IP
b. Subject

(i) *Who does [ IP Jack [VP think [CPnull [ IP [NP the
necklace [PP for __]] is expensive]]]]?

(ii) start–IP–VP–CPnull–IP–NP–PP–end
(iii) Low probability:

CPnull–IP–NP
IP–NP–PP

c. Whether
(i) *What does [IP the teacher [VP wonder [CPwhether

whether [IP Jack [VP stole __]]]]]?
(ii) start–IP–VP–CPwhether–IP–VP–end
(iii) Low probability:

IP–VP–CPwhether

VP–CPwhether–IP
CPwhether–IP–VP
nly the smoothing step in the calculation process that prevents
robabilities from being zero.

(Chom
many o
from th
(2013b

wnloaded from: https://pubs.asha.org University of Connecticut on 07/11/2019, Te
d. Adjunct
(i) *What does [IP the teacher [VP worry [CPif if [IP

Lily [VP forgot __]]]]]?
(ii) start–IP–VP–CPif –IP–VP–end
(iii) Low probability:

IP–VP–CPif

VP–CPif –IP
CPif –IP–VP
Therefore, implicit knowledge of these syntactic
islands can be translated to implicit recognition that the
wh-dependencies in question contain several container node
trigrams that never occur in the input, and this is what
learners leverage to make their judgments. On the represen-
tational side, this helps us understand how knowledge of
constraints on wh-dependencies may be represented in the
mind. In particular, rather than needing to know about
specific island structural constraints, humans could instead
be sensitive to local pieces of structure captured by container
node trigrams.10

On the learning side, this helps us understand exactly
what is required for humans to leverage these local pieces
of structure and end up with the grammaticality preferences
that we see demonstrated behaviorally by adults for syn-
tactic islands. If this is indeed the way the children learn
about syntactic islands, then we know what this learning
strategy requires to succeed: the knowledge, biases, and
abilities listed in Example 5. These fall into four major areas:
(a) parsing utterances into phrase structure trees, (b) char-
acterizing dependencies as container node sequences, (c) track-
ing the frequency of container node trigrams in the input,
and (d) calculating the probability of a container node
sequence for a given wh-dependency on the basis of its con-
tainer node trigrams.

Consequences for the Debate Between Linguistic
Nativists and Constructionists

Once a successful learning strategy has been identified,
one question that we can ask is how the components of that
learning strategy may come to exist in the child. Pearl and
Sprouse (2013b) have suggested that there are (at least) two
dimensions along which components of a learning strategy
might vary: components can either be (a) innately specified
(innate) or derived from other components (derived) and
(b) generally available across cognitive domains (domain-
general) or available to one specific cognitive domain alone
(domain-specific). This means that there are four types of
learning components (Example 11).
a. innate, domain-general
b. derived, domain-general
c. derived, domain-specific
d. innate, domain-specific
sky, 1973, 1986; Huang, 1982; Lasnik & Saito, 1984; among
thers), though its exact instantiation of local structure differed
e container node trigrams investigated by Pearl and Sprouse
).
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11For example, instances of IPpresent–VPsee–PPwith and IPpresent–VPsee–PPon
would not be recognized as the same type of local structure (IP–VP–PP)
and so would be counted individually in the input. Because of the large
number of content words in the language (e.g., verbs and prepositions), this
leads to many isolated observations of subcategorized trigrams that cannot
be aggregated into the more abstract representation (IP–VP–PP) used
in the modeled learning strategy. This then disrupts successful learning.
All learning theories require innate, domain-general
(Type a) components for any learning at all to exist. Most
learning theories also allow for the possibility of derived
components regardless of whether they are domain-general
or domain-specific (Types b and c), as the derivation of
more complex knowledge is the very definition of learning.
However, the possibility of innate, domain-specific compo-
nents (Type d) in language acquisition has led to a long-
standing debate in the field of cognitive science between
linguistic nativists, who allow for the possibility of Type d
components, and constructionists, who only allow for the
possibility of Types a–c. Crucially, computational models
such as the one presented here provide an explicit list of
components that can be evaluated relative to this typology
to fruitfully contribute to this debate.

Pearl and Sprouse (2013b) have discussed each of the
components of the syntactic islands learning strategy in
detail, so we only provide a brief discussion of each of the
four major components here. The first component is the
learner’s ability to parse utterances into phrase structure trees.
This ability is not specific to the learning of syntactic island
effects, as it underlies all of syntactic knowledge. Therefore,
the question of whether it can be accomplished without
innate, domain-specific components is an area of active
research in the field of acquisition.

The second component is the ability to characterize
dependencies as container node sequences. At first glance,
this component appears to be a straightforward consequence
of the ability to parse the input into phrase structure trees:
Once the tree is available, the sequence of container nodes is
also (in principle) available. This is because the search for
the gap position when processing an utterance is an active
process (Crain & Fodor, 1985; Frazier & Flores D’Arcais,
1989; Stowe, 1986) that tracks the container nodes of the
gap location (see C. Phillips, 2006, for a review). However,
this does not explain why the learner chooses to attend to
the sequence of container nodes exclusively as opposed
to all of the other information that is available in a phrase
structure tree, such as the number of nouns that intervene
between the wh-word and the gap, the number of verbs, or
the number of functional categories, and so on. In addition,
the modeled strategy requires the learner to characterize
wh-dependencies at a particular level of specificity—namely,
what might be considered “basic” phrasal nodes (e.g., IP,
VP, NP, and so on) with the exception of CP, which is
subcategorized by the lexical item in the complementizer
position (e.g., CPnull, CPthat). This subcategorization is very
important, because the learning strategy fails to work for
two of the four syntactic islands otherwise (see Pearl &
Sprouse, 2013b, for details). The fact that the learner must
attend to this one piece of information over all others, and
this specific instantiation of it besides, is a potential mystery
that requires additional research. It may be that this can
be explained without innate, domain-specific learning biases,
but it may also turn out that the bias to attend to these con-
tainer node sequences is innate and domain-specific.

The third component is the ability to track the frequency
of container node trigrams. Once again, this component
750 Journal of Speech, Language, and Hearing Research • Vol. 58 • 7
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can be divided into two parts: the ability to track frequen-
cies, which is likely innate and domain-general (it is assumed
by nearly all learning theories), and the bias to attend spe-
cifically to trigrams (rather than any other n-grams), which
is currently a mystery. Additional research is necessary to
determine how it is that the learner settles on trigrams as the
appropriate unit size for learning syntactic islands, though
there is evidence that young children rely on sequences of
three units for other parts of language acquisition, such as
word segmentation and grammatical categorization (see
discussion below in the Consequences for Studies of Atypical
Development section).

The final component is the ability to calculate the
probability of a given container node sequence given the tri-
gram frequencies. The ability to calculate probabilities is
likely innate and domain-general, as it is part of nearly all
learning theories.

Consequences for Studies of Atypical Development
Another question we can ask is how the successful

learning strategy might break down during atypical devel-
opment. The components of the learning theory again
provide a roadmap for potential investigation.

For phrase structure, can the child recognize the ap-
propriate phrase structure for a given utterance, whether or
not it has a dependency in it? This is one of the most basic
components of the modeled learning strategy, as phrase
structure is an underlying representation required for syntac-
tic knowledge. Being able to successfully parse an utterance
requires the child to already recognize appropriate syntac-
tic category information and construct the appropriate
phrase structures on the basis of those syntactic categories.

For container nodes, does the child recognize the
appropriate container nodes and use them to characterize
wh-dependencies? We know that container nodes are ac-
tively tracked during typical processing of dependencies.
Therefore, when we observe atypical development, we can
investigate whether the child is able to actively track con-
tainer nodes for dependencies. We also know that the mod-
eled strategy requires a specific instantiation of container
nodes to succeed. Therefore, another important component
is whether the child is characterizing the dependencies using
the right kind of container nodes. If he or she characterizes
them using basic nodes only, we expect to see failure for two
specific island types (see Pearl & Sprouse, 2013b, for dis-
cussion); if he or she characterizes them using all subcate-
gorized container nodes (e.g., VPthink, PPwith, and so on), we
may find no learning of syntactic islands at all because of
data sparseness.11
40–753 • June 2015
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If phrase structure and container node characterization
are working as they ought to, is the child tracking container
node trigrams appropriately? First, we may want to assess
whether he or she is tracking them for wh-dependencies only
and excluding other kinds of dependencies. This is quite im-
portant, as it turns out that syntactic islands do not exist in
the same way for dependencies between pronouns and their
antecedents. For example, the island-spanning dependency
in the Whether island *Who did Lily wonder whether Jack
likes __? is perfectly acceptable when it is a dependency
between a pronoun and its antecedent: Lily wonders whether
Jack likes herLily. In particular, container node trigrams that
indicate a Whether island (e.g., VP–CPwhether–IP) because
they are unobserved in the learner’s wh-dependency input
are actually observed in the pronoun dependency input.
Therefore, it is imperative that the child track container node
trigrams for these dependency types separately.

Relatedly, is the child able to break sequences into
trigrams appropriately and track these in the input? There
is significant experimental evidence that this ability to at-
tend to sequences of three units is consistent with children’s
observable behavior for a variety of acquisition tasks—
for example, the comparison of three sequential transitional
probabilities for word segmentation (Aslin, Saffran, &
Newport, 1998; Estes, Evans, Alibali, & Saffran, 2007;
Pelucchi, Hay, & Saffran, 2009; Saffran, Aslin, & Newport,
1996; among others) and frequent frames consisting of three
sequential units for grammatical categorization (Mintz,
2006; Wang & Mintz, 2008). Therefore, we might assess an
atypical learner’s ability to track trigrams for a variety of
linguistic stimuli.

If it turns out that trigrams are being tracked cor-
rectly, can the child then combine container node trigrams
appropriately to generate a grammaticality judgment? The
modeled learning strategy requires the child to do this for
wh-dependency judgments, but we might also look for the
general ability to do this for any task that requires combin-
ing probabilities, whether linguistic or nonlinguistic. There-
fore, if this ability is impaired, we should see repercussions
in many developmental areas and not just in language.

In this way, the precise instantiation of the modeled
strategy can provide guidance on what to look for in the
learning process when we see atypical development occur-
ring. Additionally, a model can provide specific predictions
about how different types of input affect a learner using this
strategy. For example, Pearl and Sprouse (2013b) investi-
gated what happens when a learner using this strategy is
given the amount of data we think typically developing
monolingual American English children encounter with the
distribution of data estimated from the CHILDES database
samples, which were primarily directed at children from
high socioeconomic status (SES) backgrounds. However,
we could just as easily investigate what kind of learning
would occur if fewer data were encountered or if the relevant
data had a different distribution, as may happen for children
from different backgrounds.

For children of different SES backgrounds, it may
well be that they encounter fewer relevant wh-dependency
Downloaded from: https://pubs.asha.org University of Connecticut on 07/11/2
data than children of higher SES backgrounds, because
they encounter fewer utterances overall (Hart & Risley,
1995), and it is certainly possible that the distribution of
wh-dependencies that they encounter is different. Similarly,
for children from a bilingual background, the amount of
language data encountered in one of the two languages is
by necessity less than the amount of that language’s data
encountered by a monolingual child, because the bilingual
child’s input is divided between two languages, whereas a
monolingual child encounters all the input in one language.
Also, a bilingual child’s input in one language may have a
different distribution of wh-dependencies. If we have em-
pirical estimates of the input data encountered by chil-
dren of different SES and linguistic backgrounds, it is
straightforward to apply the model to those data and see
how they affect learning of syntactic islands. More gen-
erally, the impact of different input types is easy to see
when we have a precisely implemented learning model that
specifies what the child’s encoded intake is and how the
child uses it.
Conclusion
Computational modeling is a powerful tool that we

can use to understand linguistic development. When used
correctly, computational modeling is beneficial to both
steps of the scientific process. Theory specification benefits
because computational modeling forces theorists to be ex-
plicit about both the components of the learning model and
their interaction. Theory evaluation benefits because com-
putational modeling provides an explicit demonstration
of how a learning strategy solves a particular learning task
given realistic language input. Explicit computational models
allow us to first see that the learning strategy works, and
then see how it works step by step, what makes it work, and
all the individual pieces that go into making it work. The
results of computational models can be relevant both for
debates in basic cognitive science, such as the longstanding
debate between linguistic nativists and constructionists,
and for practical applications, such as studies and potential
interventions in atypical development. We have provided a
concrete example of the computational modeling process
applied to the task of learning about syntactic islands, and
we hope this has highlighted both the considerations nec-
essary for modeling and the empirical data needed to ade-
quately implement an informative model. This general
computational modeling approach can be used for any ac-
quisition task, provided we have the theoretical, corpus,
and experimental data to precisely define both the acquisi-
tion task and the learning strategy.
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